HITACHI INVERTER

SJ700D-3 SERIES

Quick Reference Guide

Introduction

Introduction

Thank you for purchasing Hitachi SJ700D-3 Series Inverter. This Quick Reference Guide describes the contents of planning the installation, installing, commissioning, using and servicing the Hitachi SJ700D-3 Series Inverter. Please read this document and the instruction manual before operation to perfectly understand proper handling and safety precautions for the product to ensure safety and proper usage. Before attempting installation, operation and maintenance work, you should understand the knowledge of equipment, information of safety, caution and how to use and service the inverter. You should also use the inverter by observing specifications described this guide and prevent risks by performing maintenance.

This guide is "Quick Reference Guide". Refer to "SJ700D-3 series Instruction Manual" on CD bundled with the inverter for more information. If you use the inverter with optional products, also you should read the manuals for those products. Note that this guide, the instruction manual and the manual for each optional product to be used should be delivered to the end user of the inverter.

Handling of this Quick Reference Guide and bundled CD (the Instruction Manual)

- The contents of the guide and the CD are subject to change without prior notice.
- Even if you lose the guide and the CD, it will not be resupplied, so please keep it carefully.
- No part of the guide and the CD may be reproduced in any form without the publisher's permission.
- If you find any incorrect description, missing description or have a question concerning the contents of these manuals, please contact the publisher.

Revision History

No.	Revision content	Date of issue	Manual code
1	First edition		April, 2014
(NT2311X

Safety Instructions

Be sure to read this Quick Reference Guide and appended documents thoroughly before installing, operating, maintaining, or inspecting the inverter. In this Quick Reference Guide, safety instructions are classified into two levels, namely WARNING and CAUTION.
! WARNING: Indicates that incorrect handling may cause hazardous situations, which may result in serious

Indicates that incorrect handling may cause hazardous situations, which may result in moderate or slight personal injury or physical damage alone.

Note that even a \qquad level situation may lead to a serious consequence according to circumstances. Be sure to follow every safety instruction, which contains important safety information. Also focus on and observe the items and instructions described under "Notes" in the text.

- Many of the drawings in the Quick Reference Guide show the inverter with covers and/or parts blocking your view as
removed. Do not operate the inverter in the status shown in those drawings. If you have removed the covers and/or parts, be
sure to reinstall them in their original positions before starting operation, and follow all instructions in this Instruction
Manual when operating the inverter.

1. Installation

| |
| :--- | :--- |
| - Install the inverter on a non-flammable surface, e.g., metal. Otherwise, you run the risk of fire. |
| - Do not place flammable materials near the installed inverter. Otherwise, you run the risk of fire. |
| - When carrying the inverter, do not hold its top cover. Otherwise, you run the risk of injury by dropping the inverter. |
| - Prevent foreign matter (e.g., cut pieces of wire, sputtering welding materials, iron chips, wire, and dust) from entering the |
| inverter. Otherwise, you run the risk of fire. |
| - Install the inverter on a structure able to bear the weight specified in this Instruction Manual. Otherwise, you run the risk of |
| injury due to the inverter falling. |
| - Install the inverter on a vertical wall that is free of vibrations. Otherwise, you run the risk of injury due to the inverter falling. |
| - Do not install and operate the inverter if it is damaged or its parts are missing. Otherwise, you run the risk of injury. |
| - Install the inverter in a well-ventilated indoor site not exposed to direct sunlight. Avoid places where the inverter is exposed |
| to high temperature, high humidity, condensation, dust, explosive gases, corrosive gases, flammable gases, grinding fluid |
| mist, or salt water. Otherwise, you run the risk of fire. |
| - The inverter is precision equipment. Do not allow it to fall or be subject to high impacts, step on it, or place a heavy load on |
| it. Doing so may cause the inverter to fail. |

2. Wiring

- Be sure to ground the inverter. Otherwise, you run the risk of electric shock or fire.
- Commit wiring work to a qualified electrician. Otherwise, you run the risk of electric shock or fire.
- Before wiring, make sure that the power supply is off. Otherwise, you run the risk of electric shock or fire.
- Perform wiring only after installing the inverter. Otherwise, you run the risk of electric shock or injury.
- Do not remove rubber bushings from the wiring section. Otherwise, the edges of the wiring cover may damage the wire,
resulting in a short circuit or ground fault.

- Make sure that the voltage of AC power supply matches the rated voltage of your inverter. Otherwise, you run the risk of
injury or fire.
- Do not input single-phase power into the inverter. Otherwise, you run the risk of fire.
- Do not connect AC power supply to any of the output terminals (U, V, and W). Otherwise, you run the risk of injury or fire.
- Do not connect a resistor directly to any of the DC terminals (PD, P, and N). Otherwise, you run the risk of fire.
- Connect an earth-leakage breaker to the power input circuit. Otherwise, you run the risk of fire.
- Use only the power cables, earth-leakage breaker, and magnetic contactors that have the specified capacity (ratings).
Otherwise, you run the risk of fire.
- Do not use the magnetic contactor installed on the primary and secondary sides of the inverter to stop its operation.
- Tighten each screw to the specified torque. No screws must be left loose. Otherwise, you run the risk of fire.
- Before operating, slide switch SW1 in the inverter, be sure to turn off the power supply. Otherwise, you run the risk of
electric shock and injury.
- Since the inverter supports two modes of cooling-fan operation, the inverter power is not always off, even when the cooling
fan is stopped. Therefore, be sure to confirm that the power supply is off before wiring. Otherwise, you run the risk of electric
shock and injury.

3. Operation

- While power is supplied to the inverter, do not touch any terminal or internal part of the inverter, check signals, or connect or
disconnect any wire or connector. Otherwise, you run the risk of electric shock or fire.
- Be sure to close the terminal block cover before turning on the inverter power. Do not open the terminal block cover while
power is being supplied to the inverter or voltage remains inside. Otherwise, you run the risk of electric shock.
- Do not operate switches with wet hands. Otherwise, you run the risk of electric shock.
- While power is supplied to the inverter, do not touch the terminal of the inverter, even if it has stopped. Otherwise, you run
the risk of injury or fire.
- If the retry mode has been selected, the inverter will restart suddenly after a break in the tripping status. Stay away from the
machine controlled by the inverter when the inverter is under such circumstances. (Design the machine so that human safety
can be ensured, even when the inverter restarts suddenly.) Otherwise, you run the risk of injury.
- Do not select the retry mode for controlling an elevating or traveling device because output free-running status occurs in retry
mode. Otherwise, you run the risk of injury or damage to the machine controlled by the inverter.
- If an operation command has been input to the inverter before a short-term power failure, the inverter may restart operation
after the power recovery. If such a restart may put persons in danger, design a control circuit that disables the inverter from
restarting after power recovery. Otherwise, you run the risk of injury.
- The [STOP] key is effective only when its function is enabled by setting. Prepare an emergency stop switch separately.
Otherwise, you run the risk of injury.
- If an operation command has been input to the inverter before the inverter enters alarm status, the inverter will restart
suddenly when the alarm status is reset. Before resetting the alarm status, make sure that no operation command has been
input.
- While power is supplied to the inverter, do not touch any internal part of the inverter or insert a bar in it. Otherwise, you run
the risk of electric shock or fire.

- Do not touch the heat sink, which heats up during the inverter operation. Otherwise, you run the risk of burn injury.
- The inverter allows you to easily control the speed of motor or machine operations. Before operating the inverter, confirm
the capacity and ratings of the motor or machine controlled by the inverter. Otherwise, you run the risk of injury.
- Install an external brake system if needed. Otherwise, you run the risk of injury.
- When using the inverter to operate a standard motor at a frequency of over 60 Hz , check the allowable motor speeds with
the manufacturers of the motor and the machine to be driven and obtain their consent before starting inverter operation.
Otherwise, you run the risk of damage to the motor and machine.
- During inverter operation, check the motor for the direction of rotation, abnormal sound, and vibrations. Otherwise, you run
the risk of damage to the machine driven by the motor.

4. Maintenance, inspection, and parts replacement

- Before inspecting the inverter, be sure to turn off the power supply and wait for 10 minutes or more. Otherwise, you run the
risk of electric shock. (Before inspection, confirm that the Charge lamp on the inverter is off and the DC voltage between
terminals P and N is 45 V or less.)
- Commit only a designated person to maintenance, inspection, and the replacement of parts. (Be sure to remove wristwatches
and metal accessories, e.g., bracelets, before maintenance and inspection work and to use insulated tools for the work.)
Otherwise, you run the risk of electric shock and injury.

5. Others

- Never modify the inverter. Otherwise, you run the risk of electric shock and injury.

CAUTION
- Do not discard the inverter with household waste. Contact an industrial waste management company in your area who can treat industrial waste without polluting the environment.

Caution for EMC (Electromagnetic Compatibility) (0.4 kW -150kW)

The SJ700D series inverter conforms to the requirements of Electromagnetic Compatibility (EMC) Directive (2004/108/EC). However, when using the inverter in Europe, you must comply with the following specifications and requirements to meet the EMC Directive and other standards in Europe:

WARNING: This equipment must be installed, adjusted, and maintained by qualified engineers who have expert knowledge of electric work, inverter operation, and the hazardous circumstances that can occur. Otherwise, personal injury may result.

1. Power supply requirements
a. Voltage fluctuation must be -15% to $+10 \%$ or less.
b. Voltage imbalance must be $\pm 3 \%$ or less.
c. Frequency variation must be $\pm 4 \%$ or less.
d. Total harmonic distortion (THD) of voltage must be $\pm 10 \%$ or less.
2. Installation requirement
a. The integrated filter in the SJ700D series inverter must be enabled. (See chapter 2 Installation andWiring) * When using the specific external filter for the SJ700D series inverter, please refer to the instruction described in the dedicated guide book for the filter.
3. Wiring requirements
a. A shielded wire (screened cable) must be used for motor wiring, and the length of the cable must be according to the following table (Table 1).
b. The carrier frequency must be set according to the following table to meet an EMC requirement (Table 1).
c. The main circuit wiring must be separated from the control circuit wiring.
4. Environmental requirements (to be met when a filter is used)
a. Ambient temperature must be within the range $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
b. Relative humidity must be within the range 20% to 90% (non-condensing).
c. Vibrations must be $5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G})(10$ to 55 Hz$)$ or less. $(0.4$ to 22 kW$)$ $2.94 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G})(10$ to 55 Hz$)$ or less. (30 to 150 kW)
d. The inverter must be installed indoors (not exposed to corrosive gases and dust) at an altitude of $1,000 \mathrm{~m}$ or less.

Safety Instructions

Table 1

model	cat.	$\begin{gathered} \text { cable } \\ \text { length }(\mathrm{m}) \end{gathered}$	$\begin{gathered} \text { carrier } \\ \text { frequency }(\mathrm{kHz}) \\ \hline \end{gathered}$	model	cat.	$\begin{gathered} \text { cable } \\ \text { length }(\mathrm{m}) \end{gathered}$	$\begin{gathered} \text { carrier } \\ \text { frequency }(\mathrm{kHz}) \\ \hline \end{gathered}$
SJ700D-004L	C3	5	2.5				
SJ700D-007L	C3	5	2.5	SJ700D-007H	C3	5	2.5
SJ700D-015L	C3	5	2.5	SJ700D-015H	C3	5	2.5
SJ700D-022L	C3	5	2.5	SJ700D-022H	C3	5	2.5
SJ700D-037L	C3	5	2.5	$\begin{aligned} & \text { SJ700D-037H } \\ & \text { SJ700D-040H } \end{aligned}$	C3	5	2.5
SJ700D-055L	C3	1	1	SJ700D-055H	C3	1	2.5
SJ700D-075L	C3	1	1	SJ700D-075H	C3	1	2.5
SJ700D-110L	C3	1	1	SJ700D-110H	C3	1	2.5
SJ700D-150L	C3	1	1	SJ700D-150H	C3	1	2.5
SJ700D-185L	C3	1	1	SJ700D-185H	C3	1	2.5
SJ700D-220L	C3	5	2.5	SJ700D-220H	C3	1	2.5
SJ700D-300L	C3	5	2.5	SJ700D-300H	C3	1	2.5
SJ700D-370L	C3	5	2.5	SJ700D-370H	C3	1	2.5
SJ700D-450L	C3	5	2.5	SJ700D-450H	C3	5	2.5
SJ700D-550L	C3	5	2.5	SJ700D-550H	C3	5	2.5
				SJ700D-750H	C3	10	2.5
				SJ700D-900H	C3	10	2.5
				SJ700D-1100H	C3	10	2.5
				SJ700D-1320H	C3	10	2.5
				SJ700D-1500H	C3	10	2.5

Cautions for UL and cUL (0.4 kW -150kW)

(Standard to comply with: UL508C, CSA C22.2 No14-5)
Warning Markings

GENERAL:

These devices are open type and/or Enclosed Type 1 (when employing accessory Type 1 Chassis Kit) AC Inverters with three phase input and three phase output. They are intended to be used in an enclosure. They are used to provide both an adjustable voltage and adjustable frequency to the ac motor. The inverter automatically maintains the required volts-Hz ration allowing the capability through the motor speed range.
(1) "Use $60 / 75^{\circ} \mathrm{C}$ CU wire only" or equivalent.

For models SJ700D series except for models SJ700D-055H, SJ700D-075H, SJ700D-110H.
(2) "Use $75^{\circ} \mathrm{C}$ CU wire only" or equivalent.

For models SJ700D series except for SJ700D-075H, SJ700D-110H, SJ700D-055H.
(3) "Suitable for use on a circuit capable of delivering not more than $100,000 \mathrm{rms}$ symmetrical amperes, 240V maximum". For models with suffix L.
(4) "Suitable for use on a circuit capable of delivering not more than $100,000 \mathrm{rms}$ symmetrical amperes, 480 V maximum". For models with suffix H.
(5) "Install device in pollution degree 2 environment"
(6) "Maximum Surrounding Air Temperature 45 or $50^{\circ} \mathrm{C} "$
(7) "CAUTION - Risk of Electric Shock - Capacitor discharge time is at least 10 min ."
(8) "Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the NEC and any additional local codes"
(9) "Solid State motor overload protection reacts with max. 120\% of FLA".
(10) Tightening torque and wire range for field wiring terminals are in the table below:

Model No.	Required Torque (N.m)	Wire Range (AWG)
SJ700D-004L	1.8	14 (Stranded only)
SJ700D-007L	1.8	14 (Stranded only)
SJ700D-015L	1.8	14 (Stranded only)
SJ700D-022L	1.8	14 (Stranded only)
SJ700D-037L	1.8	10 (Stranded only)
SJ700D-050L	3.0	8
SJ700D-055L	4.0	8
SJ700D-075L	4.0	6
SJ700D-110L	4.0	$6-4$
SJ700D-150L	4.9	2
SJ700D-185L	4.9	1
SJ700D-220L	8.8	1 or $1 / 0$
SJ700D-300L	8.8	$2 / 0$ or Parallel of $1 / 0$
SJ700D-370L	20.0	$4 / 0$ (Prepared wire only) or Parallel of $1 / 0$
SJ700D-450L	20.0	(Prepared wire only) or Parallel of $1 / 0$
SJ700D-550L	19.6	350 kcmil
		(Prepared wire only) or Parallel of $2 / 0$ (Prepared wire only)

Model No.	Required Torque (N.m)	Wire Range (AWG)
SJ700D-007H	1.8	$14($ Stranded only)
SJ700D-015H	1.8	14 (Stranded only)
SJ700D-022H	1.8	14 (Stranded only)
SJ700D-037H	1.8	14 (Stranded only)
SJ700D-040H	1.8	14 (Stranded only)
SJ700D-055H	4.0	12
SJ700D-075H	4.0	10
SJ700D-110H	4.0	8
SJ700D-150H	4.9	6
SJ700D-185H	4.9	6
SJ700D-220H	4.9	6 or 4
SJ700D-300H	4.9	3
SJ700D-370H	20.0	1
SJ700D-450H	20.0	1
SJ700D-550H	20.0	$2 / 0$
SJ700D-750H	20.0	Parallel of $1 / 0$
SJ700D-900H	20.0	Parallel of $1 / 0$
SJ700D-1100H	35.0	Parallel of $3 / 0$
SJ700D-1320H	35.0	Parallel of $3 / 0$
SJ700D-1500H	35.0	

(11) Distribution fuse / circuit breaker size marking is included in the manual to indicate that the unit shall be connected with a listed inverse time circuit breaker, rated 600 V with the current ratings as shown in the table below:

Model No.	Fuse Size (Maximum A)		Circuit Breaker (A)	
	Type	Rating		Type
SJ700D-004L	J	30 A	SJ700D-004L	J
SJ700D-007L	J	30 A	SJ700D-007L	J
SJ700D-015L	J	30 A	SJ700D-015L	J
SJ700D-022L	J	30 A	SJ700D-022L	J
SJ700D-037L	J	30 A	SJ700D-037L	J
SJ700D-050L	J	30 A	SJ700D-050L	J
SJ700D-055L	J	100 A	SJ700D-055L	J
SJ700D-075L	J	100 A	SJ700D-075L	J
SJ700D-110L	J	100 A	SJ700D-110L	J
SJ700D-150L	J	125 A	SJ700D-150L	J
SJ700D-185L	J	125 A	SJ700D-185L	J
SJ700D-220L	J	125 A	SJ700D-220L	J
SJ700D-300L	J	225 A	SJ700D-300L	J
SJ700D-370L	J	225 A	SJ700D-370L	J
SJ700D-450L	J	250 A	SJ700D-450L	J
SJ700D-550L	J	300 A	SJ700D-550L	J

Model No.	Fuse Size (Maximum A)		Circuit Breaker (A)	
	Type	Rating		Type
SJ700D-007H	J	20 A	SJ700D-007H	J
SJ700D-015H	J	20 A	SJ700D-015H	J
SJ700D-022H	J	20 A	SJ700D-022H	J
SJ700D-037H	J	20 A	SJ700D-037H	J
SJ700D-040H	J	20 A	SJ700D-040H	J
SJ700D-055H	J	40 A	SJ700D-055H	J
SJ700D-075H	J	40 A	SJ700D-075H	J
SJ700D-110H	J	40 A	SJ700D-110H	J
SJ700D-150H	J	75 A	SJ700D-150H	J
SJ700D-185H	J	75 A	SJ700D-185H	J
SJ700D-220H	J	75 A	SJ700D-220H	J
SJ700D-300H	J	100 A	SJ700D-300H	J
SJ700D-370H	J	100 A	SJ700D-370H	J
SJ700D-450H	J	150 A	SJ700D-450H	J
SJ700D-550H	J	150 A	SJ700D-550H	J
SJ700D-750H	J	225 A	SJ700D-750H	J
SJ700D-900H	J	225 A	SJ700D-900H	J
SJ700D-1100H	J	300 A	SJ700D-1100H	J
SJ700D-1320H	J	350 A	SJ700D-1320H	J

Note) Please select an appropriate fuse or an appropriate circuit breaker for a system.
(12) "Field wiring connection must be made by a UL Listed and CN closed-loop terminal connector sized for the wire gauge involved. Connector must be fixed using the crimp tool specified by the connector manufacturer."
(13) "Motor over temperature protection is not provided by the drive."

[^0]
SJ700-2 to SJ700D-3

The Hitachi SJ700D-3 series succeed the SJ700-2 series with the additional and enhanced features.
The table below is a belief summary of the major improved features.

Subject	SJ700-2	SJ700D-3	Point!
Dual rating Constant torque/ Variable torque	N/A	Selectable	If the inverter drives the light load application (e.g. fan pump application), you can choose the one size smaller capacity inverter than the motor capacity, which allows you to reduce the total cost of your system.
Easy sequence (EzSQ) - Drive program function	Process with 1 task.	Supporting 5 tasks processing with improved user friendliness.	The inverter processes 5 tasks at the same time, which allows you to realize 5 times faster EzSQ processing in maximum.
Optional LCD Operator	WOP operator (2-line LCD)	Full compatibility with WOP operator (5-line LCD and multi-language)	WOP, the optional LCD Operator, provides several user friendliness; - Multi data monitoring - Parameter configuration as monitoring data - Parameter / Program copy - Multi-language display
RS-485 serial communications	19.2kbps (maximum)	115.2 kbps (maximum), and so on.	Approx. 6 times faster communication in comparison with the former model are supported. In addition, some communication commands are newly supported.
Initialization	After setting b084 (initialization selection), press some keys.	In addition to the conventional method, executing initialization by a parameter is possible. (Select b084 and b180=01 : enable the initializing)	You can initialize easily only by setting the parameter and no special procedure is required
Phase loss protection	Phase loss input protection	Phase loss input protection Phase loss output protection	Protection function expands to not only input side but output side, which provides more reliable protection against the phase loss.

Start-up Commissioning the drive
S. 1 Quick installation and commissioning flowchart S-2
S. 2 Instructing in using the panel S-3
S. 3 Example of I/O connections S-4
S. 4 Basic Parameter Setting to Drive Motor S - 8
S.4.1 Setting Frequency command source and Run command source S-8
S.4.2 Frequency command source selection S-9
S.4.3 Run command source selection S - 11
S. 5 Selecting the control mode S-13
Chapter 1 Overview
1.1 Inspection of the Purchased Product 1-2
1.1.1 Inspecting the product 1-2
1.1.2 Quick Reference Guide and Instruction Manual- 1-2
1.2 Method of Inquiry and Product Warranty 1-3
1.2.1 Method of inquiry 1-3
1.2.2 Product warranty. 1-3
1.2.3 Warranty Terms 1-3
1.3 Exterior Views and Names of Parts 1-4
Chapter 2 Installation and Wiring
2.1 Installation 2-2
2.1.1 Precautions for installation 2-3
2.1.2 Backing plate 2-5
2.2 Wiring 2-6
2.2.1 Terminal connection diagram and explanation of terminals and switch settings 2-7
2.2.2 Wiring of the main circuit 2-10
2.2.3 Wiring of the control circuit 2-19
2.2.4 Wiring of the digital operator 2-20
Chapter 3 Operation
3.1 Operating Methods 3-2
3.2 How to operate the Digital Operator (OPE-SBK) 3-4
3.2.1 Names and functions of components 3-4
3.2.2 Code display system and key operations 3-5
Chapter 4 List of Data Settings
4.1 Precautions for Data Setting 4-2
4.2 Monitoring Mode 4-2
4.3 Function Mode 4-3
4.4 Extended Function Mode 4-4
Chapter 5 Error Codes
5.1 Error Codes and Troubleshooting 5-2
5.1.1 Error codes 5-2
5.1.2 Trip conditions monitoring 5-4
5.2 Warning Codes 5-5
Chapter 6 Specifications
6.1 Specifications 6-2
6.2 External dimensions 6-5

Contents
(Memo)

Start-up Commissioning the drive

This chapter contains quick installation and commissioning flowchart to drive the motor.

$$
\text { S. } 1 \text { Quick installation and commissioning flowchart.............S - } 2
$$

S. 2 Instructing in using the panel S-3
S. 3 Example of I/O connections S-4
S. 4 Basic Parameter Setting to Drive Motor S-8
S. 5 Selecting the control mode S-13

Start-up Commissioning the drive

S. 1 Quick installation and commissioning flowchart

S. 2 Instructing in using the panel

This section describes how to use the operator to change the settings.
For more information, refer to the SJ700D-3 manual or section 3.2 : How to operate the Digital Operator.

Indication of using the control panel

Standard Operator (OPE-SBK)

Key Operation	Display(Example)	Use examples (*** is a three digit number)
FUNC	$\begin{gathered} \underline{\mathrm{d} 001} \longleftrightarrow \underline{0.00} \\ \text { (Frequency monitor) } \end{gathered}$	In case $\mathrm{d}^{* * *}$ or $\mathrm{F}^{* * *}$ display on the panel, indication changes between parameters and data with pushing FUNC key.
	$\begin{aligned} & \frac{\mathrm{A}---}{\uparrow} \rightarrow \frac{\mathrm{A} 044}{\downarrow} \\ & \frac{\mathrm{~A} 044}{(\text { Control mode })} \end{aligned}$	In case $\mathrm{A}^{* * *}, \mathrm{~B}^{* * *}, \mathrm{C}^{* * *}, \mathrm{H}^{* * *}, \mathrm{P}^{* * *}$ or $\mathrm{U}^{* * *}$ display on the panel, indication changes among A--- (head of group), A044 (parameter) and 00 (data) with pushing FUNC key.
STR	$\underset{(\text { Control mode })}{\underline{00}} \underline{\text { A044 }}$	When the panel indication displays 00 (data), the inverter saves the displayed value as the new setting with pushing the STR key, and panel indication changes to the A044 (parameter). The saved data are held even if the power supply to the inverter is turned off.
	$\underset{\rightarrow \underline{\mathrm{F} 004} \rightarrow \mathrm{~d} 002 \rightarrow \ldots}{\rightarrow \ldots}$	Panel Indication scrolls up through $\mathrm{d}^{* * *}, \mathrm{~F}^{* * *}$ and the heads of group (for example A---, B---, C---, H---, P--- and U---).
	$\begin{aligned} \underline{1.00} & \rightarrow \underline{1.01} \rightarrow \ldots \\ \underline{A 011} & \rightarrow \mathrm{~A} 012 \end{aligned} \rightarrow \ldots$	The value increases if panel indication displays parameters or data. Holding the key down changes the value faster.
	$\begin{aligned} & \mathrm{A}-\ldots \rightarrow \underset{\mathrm{F} 004 \rightarrow \ldots}{\rightarrow} \rightarrow \\ & \mathrm{~d} 002 \end{aligned} \rightarrow$	Panel indication scrolls down through $\mathrm{d}^{* * *}, \mathrm{~F}^{* * *}$ and the heads of group (for example A---, B---, C---, H---, P--- and U---).
	$\begin{aligned} & \underline{1.01} \rightarrow \underline{1.00} \rightarrow \ldots \\ & \underline{\mathrm{~A} 012} \rightarrow \underline{\mathrm{~A} 011} \rightarrow \ldots \end{aligned}$	The value decreases if panel indication displays parameters or data. Holding the key down changes the value faster.
		Pushing simultaneously enables to change each digit directly.
	A044 \rightarrow ' ${ }^{\prime} 044$ $0.00 \rightarrow 0.00$	

*) In some cases parameters and data are discontinuous.
(For more information, refer to SJ700D-3 manual.)

Start－up Commissioning the drive

S． 3 Example of I／O connections

Example 1：Frequency command source
Run command source

Setting data in F001（Digital Operator）
RUN／STOP key（Digital Operator）
＊）SJ700D－＊＊＊＊FF3（Initial settings）

（2）Operation
Frequency：By using the digital operator，set the frequency command into parameter F001．
Run／Stop：Push the key RUN and $\begin{gathered}\text { STOP／} \\ \text { RESET }\end{gathered}$ on the digital operator to run and stop．
＊）Refer to section $\underline{S .4 .2}$ for changing the frequency command source and section $\mathbf{S . 4 . 3}$ for changing the run command source．
（3）Parameter settings

Parameter	Details	Setting data
A001	Digital Operator	ロコ
A002	Digital Operator	ロコ
F001	Output frequency setting	エח．Note）

Note）Initial settings are 0.00 Hz ．You need to set the appropriate data．

Example 2: : Frequency command source External potentiometer (Control terminal) Run command source RUN/STOP key (Control panel)
(1) I/O connections

(2) Operation

Frequency: Set the frequency command via a potentiometer connected to H/O/L terminal.
Run/Stop: Push the key RUN and ($\begin{array}{r}\text { STOP/ } \\ \text { RESET }\end{array}$ to run and stop.
*) Refer to section $\underline{S .4 .2}$ for changing the frequency command source and section $\underline{S .4 .3}$ for changing the run command source.
(3) Parameter settings

Parameter	Details	Setting data
A001	Control circuit terminal block	$\square 1$
A002	Digital Operator	$\square \square$

Example 3: Frequency command source
Run command source

Setting data in F001 (Control panel) + multi speed select
External signal (Control terminal)
(1) I/O connections

*) In case of SJ700D-****FUF3, you need to set C006=03 and C016=00.
*) You need to set multi speed frequency command into parameters (from A020 to A022).
*) Refer to section $\underline{S .4 .2}$ for changing the frequency command source and section $\underline{S .4 .3}$ for changing the run command source.
(2) Operation

Frequency: By using the multi speed terminals, set the frequency command.
Run/Stop: Using the forward / reverse terminal to run and stop.
(3) Parameter settings

Parameter	Details	Setting data
A001	Digital Operator	П1]
A002	Control circuit terminal block	$\square 1$
A020	Multi speed 1 and 2 are not active.	71. 10.15 Note)
A021	Multi speed 1is active and multi speed 2 is not active.	$\square 1.11{ }^{115}$ Note)
A022	Multi speed 1is not active and multi speed 2 is active.	1.10 Note)

Note) Initial settings are 0.00 Hz . You need to set the appropriate data.

Example 4: Frequency command source External analog voltage source and current source (Control terminal) Run command source External signal (Control terminal)
*) SJ700D-****FEF3/FUF3 (Initial settings)

(1) I/O connections

${ }^{*}$) Refer to S.4.2 for changing the frequency command source and S.4.3 for changing the run command source.

(2) Operation

Frequency: Using the voltage source and current source to set the frequency command with analog select terminal (AT terminal: OFF: Voltage command / ON: Current command).

* AT terminal is used to switch the analog input O and OI to which the inverter refers as the frequency command. (e.g. When AT terminal is OFF, the inverter outputs the frequency according to the voltage input given to the O terminal)
Run/Stop: Using the forward / reverse terminal to run and stop.
(3) Parameter settings

Parameter	Details	Setting data
A001	Control circuit terminal block	I
A002	Control circuit terminal block	I

Start-up Commissioning the drive

S. 4 Basic Parameter Setting to Drive Motor

S.4.1 Setting Frequency command source and Run command source

This section describes how to drive the motor with SJ700D briefly.
The frequency and run command are necessary to drive the motor with the inverter.
In many cases, these sources are set as below;
Setting the frequency : (A) Data settings (Digital operator)
(B) Via external analog signals (Control terminal)

Run and stop : (A) RUN / STOP key (Digital operator)
(B) Via external signal (Control terminal)

The frequency command and Run command sources can be changed by the parameter A001 (Frequency command source) and A002 (Run command source) respectively.

In addition to the basic setting mentioned above, there are several options for A001 and A002 setting.

Parameter	Detail	Data range	Initial settings	
			****FF3	$\begin{aligned} & * * * * \text { FEF3 } \\ & * * * * \text { FUF3 } \end{aligned}$
A001	Frequency source	00(keypad potentiometer) 01(control circuit terminal block) 02(operator) 03(RS485) 04(option 1) 05(option 2) 06 (pulse-string input) 07(easy sequence) 10(operation function result)	02	01
A002	Run command source	```01(control circuit terminal block) 02(operator) 03(RS485) 04(option 1) 05(option 2)```	02	01

*) This chapter explains 01 (control circuit terminal block) and 02(operator) mainly.

S.4.2 Frequency command source selection

Key operation to set A001

****FF3 : Change A001 from 02 (operator) to 01 (control circuit terminal block).

Procedure	Key operation	Indication	Details
1-1		0.010	After powering up of the inverter, the operator displays 0.00 , output frequency monitor (d001)
1-2		미I	Indication changes from data display (0.00) to parameter display (d001).
1-3	$\text { (1) or } 2 \mathrm{~m}$	A--	Push the key and select the head of Group A.
1-4		Fand	Push the key and indication changes from A--- to A001.
1-5		$\square 10$	Push the key and indication changes to 02 (operator).
1-6		$\square 1$	Push the key and change from 02 to 01 (control circuit terminal block).
1-7		F[IT 1	Push the key and indication changes A001 (Data save).
1-8		T.00	By pushing the key for more than three seconds, indication changes to the output frequency data (d001). (It depends on b038 setting)

****FEF3/FUF3 : Change from 01 (control circuit terminal block) to 02 (operator).
*) Replace the procedure 1-5 and 1-6 in the list above with 1-5' and 1-6' in the list below.

Procedure	Key operation	Indication	Details
$1-5$,		PUNC	
$1-6$,		Push the key and indication changes to 01 (control circuit terminal block).	

Setting frequency command

(A) A001=02: Digital operator

With this setting, the value set in the parameter F001 defines the target frequency of the inverter.
The procedure below shows an example of a procedure to set $\mathrm{F} 001=40 \mathrm{~Hz}$.
Procedure
note) In case of the setting A001=02, on displaying the output frequency, the setting frequency can change by the up and down keys.

(B) $\mathrm{A} 001=01$: Control terminal

The frequency command can be changed in accordance with the analog input given to the O/OI terminal on the control terminal by using a potentiometer (connected to $\mathrm{H} / \mathrm{O} / \mathrm{L}$ terminal) or an analog voltage / current supply. With this setting, the parameter F001 indicates the frequency command value given via the control terminal. Please refer to the instruction manual for the detailed information about the analog input (e.g. adjustment of he start / end value).
(C) Multi-speed selection - Binary operation

The inverter can store several target frequencies (up to 16), which is useful to define such low / middle / high frequencies and those frequencies are switched by external signals. The actual target frequency is selected from those pre-set frequencies in accordance with the signal status of the multi speed inputs. This part describes an example using 3 frequency sets.

Parameters	Condition	Setting
A001	Operator	밀 *)
A020	Multi speed 1 and 2 are not active.	ㅁ.
A021	Multi speed 1is active and multi speed 2 is not active.	ก.10 *2)
A022	Multi speed 1is not active and multi speed 2 is active.	ก.10 *2)

*1) In case multi speed 1 and 2 are not active, the setting of A001 defines the frequency command source. In case of $\mathrm{A} 001=02$, and if multi speed 1 and 2 are not active, F001 adopts the A020 value.
*2) Initial settings are 0.00 Hz . You should set the appropriate data.

S.4.3 Run command source selection

Key operation to set A002

****FF3 : Change from 02 (operator) to 01 (control circuit terminal block).

| Procedure | Key operation | Indication | Details |
| :--- | :--- | :--- | :--- | 2-1

****FEF3/FUF3 : Change 01 (control circuit terminal block) to 02 (operator).
${ }^{*}$) Replace the procedure 2-6 and 2-7 on the list above with 2-6' and 2-7' in the list below.

Procedure	Key operation	Indication	Details
$2-6$,		FUNg	
$2-7$,		Push the key and indication changes to 01 (control circuit terminal block).	

Start-up Commissioning the drive

Operating run command

(A) A001=02: Digital operator

RUN and STOP key on the digital operator allows you to start and stop the motor respectively.

RUN:

*) Changing the rotatory direction can be done by changing the parameter F004, keypad run key routing or to exchange any two phases of the wiring to the motor. Before wiring, you should confirm that the power supply to the inverter has been cut off.
(B) A001=01: Control terminal

You can start and stop the motor operation via the FW terminal (forward rotation) or RV terminal (Reverse rotation).

In case of terminal FW:
Sink logic (short between P24 and PLC)
FW-CM1 short: The inverter runs the motor in the forward direction --- RUN command is active.
FW-CM1 open: The inverter decelerates and stops the motor
--- RUN command is not active.
Source logic (short between CM1 and PLC)

FW-P24 short: The inverter runs the motor in the forward direction
FW-P24 open: The inverter decelerates and stops the motor
--- RUN command is active.
--- RUN command is not active.

S. 5 Selecting the control mode

The SJ700D-3 inverter series provides several options for motor control to satisfy various application requirements. Please choose a suitable control mode for your application by referring to the table below. Initial setting of A044 is 00 (V/f control mode).

Check			
In case you want to drive fun, pump or light load application :	-Using the reduced torque mode (A044=01) -Use the light load mode (b049=01) to drive the motor with the one size smaller inverter.		
In case you want to set the characteristic of voltage/frequency freely :	-Using Free V/f mode (A044=02)		
In case you want to drive the application which requires high torque control without the motor feedback :	-Using sensor-less vector mode (A044=03)*		
In case you want to drive the application which requires the high torque control at low frequency range without the motor feedback.	-Using 0Hz sensor-less vector mode (A044=04)*		
In case you want to - drive the application which requires high torque control	-Using vector control mode (A044=05)*		
- drive the application which requires the position			
control with the motor feedback:		\quad	-
:---			

*) Depending on the load, applying the one size bigger inverter may be required. For more information, refer to SJ700D-3 manual.

Start-up Commissioning the drive
(Memo)

Chapter 1 Overview

This chapter describes the inspection of the purchased product, the product warranty, and the names of parts.1.1 Inspection of the Purchased Product $\cdots \cdots$. 1-21.2 Method of Inquiry and Product Warranty - 1-3
1.3 Exterior Views and Names of Parts 1-4

Chapter 1 Overview

1.1 Inspection of the Purchased Product

1.1.1 Inspecting the product

After unpacking, inspect the product as described below.
If you find the product is abnormal or defective, contact your supplier or local Hitachi Distributor.
(1) Check the product for damage (including falling of parts and dents in the inverter body) caused during transportation.
(2) Check that the product package contains an inverter set, this Quick Reference Guide and a CD (including the SJ700D-3 Instruction Manual).
(3) Check the specification label to confirm that the product is the one you have ordered.

Figure 1 Location of the specifications label

Figure 1-2 Contents of the specifications label

1.1.2 Quick Reference Guide and Instruction Manual

This Quick Reference Guide describes how to handle and maintain the Hitachi SJ700D-3 Series Inverter briefly and "SJ700D-3 series Instruction Manual" on CD bundled with inverter describes the more detailed information. Read these manuals carefully before using the inverter, and then keep it handy for those who operate, maintain, and inspect the inverter. When using the inverter together with optional products, also read the manuals for those products.

Note that these manuals and the manual for each optional product to be used should be delivered to the end user of the inverter.

1.2 Method of Inquiry and Product Warranty

1.2.1 Method of inquiry

For an inquiry about product damage or faults or a question about the product, notify your supplier of the following information:
(1) Model of your inverter
(2) Serial number (MFG No.)
(3) Date of purchase
(4) Content of inquiry

- Location and condition of damage
- Content of your question

1.2.2 Product warranty

The product will be warranted under the term described in the next section "1.2.3 Warranty Terms".
Even within the warranty period, repair of a product fault will not be covered by the warranty (but the repair will be at your own cost) if:
(1) the fault has resulted from incorrect usage not conforming to the instructions given in this Instruction Manual or the repair or modification of the product carried out by an unqualified person,
(2) the fault has resulted from a cause not attributable to the delivered product,
(3) the fault has resulted from use beyond the limits of the product specifications, or
(4) the fault has resulted from disaster or other unavoidable events.

The warranty will only apply to the delivered inverter and excludes all damage to other equipment and facilities induced by any fault of the inverter.

Repair at the user's charge :
Following the warranty period, any examination and repair of the product will be accepted at your charge. Even during the warranty period, examination and repairs of faults, subject to the above scope of the warranty disclaimer, will be available at charge. To request a repair at your charge, contact your supplier or local Hitachi Distributor.

1.2.3 Warranty Terms

The warranty period under normal installation and handling conditions shall be two (2) years from the date of manufacture ("DATE" on product nameplate), or one (1) year from the date of installation, whichever occurs first. The warranty shall cover the repair or replacement, at Hitachi's sole discretion, of ONLY the inverter that was installed.
(1) Service in the following cases, even within the warranty period, shall be charged to the purchaser:
a. Malfunction or damage caused by mis-operation or modification or improper repair
b. Malfunction or damage caused by a drop after purchase and transportation
c. Malfunction or damage caused by fire, earthquake, flood, lightening, abnormal input voltage, contamination, or other natural disasters
(2) When service is required for the product at your work site, all expenses associated with field repair shall be charged to the purchaser.
(3) Always keep this manual handy; please do not lose it. Please contact your Hitachi distributor to purchase replacement or additional manuals.

Chapter 1 Overview

1.3 Exterior Views and Names of Parts

The figure below shows an exterior view of the inverter.

Exterior view of inverter

For the wiring of the main circuit and control circuit terminals, open the terminal block cover.
For mounting optional circuit boards, open the front cover.

Exterior view of inverter with the removed front and terminal block covers

Chapter 2 Installation and Wiring

This chapter describes how to install the inverter and the wiring of main circuit and control signal terminals with typical examples of wiring.
2.1 Installation 2-2
2.2 Wiring 2-6

Chapter 2 Installation and Wiring

2.1 Installation

CAUTION

- Install the inverter on a non-flammable surface, e.g., metal. Otherwise, you run the risk of fire.
- Do not place flammable materials near the installed inverter. Otherwise, you run the risk of fire.
- When carrying the inverter, do not hold its top cover. Otherwise, you run the risk of injury by dropping the inverter.
- Prevent foreign matter (e.g., cut pieces of wire, sputtering welding materials, iron chips, wire, and dust) from entering the inverter. Otherwise, you run the risk of fire.
- Install the inverter on a structure able to bear the weight specified in this Instruction Manual. Otherwise, you run the risk of injury due to the inverter falling.
- Install the inverter on a vertical wall that is free of vibrations. Otherwise, you run the risk of injury due to the inverter falling.
- Do not install and operate the inverter if it is damaged or its parts are missing. Otherwise, you run the risk of injury.
- Install the inverter in a well-ventilated indoor site not exposed to direct sunlight. Avoid places where the inverter is exposed to high temperature, high humidity, condensation, dust, explosive gases, corrosive gases, flammable gases, grinding fluid mist, or salt water. Otherwise, you run the risk of fire.
- The inverter is precision equipment. Do not allow it to fall or be subject to high impacts, step on it, or place a heavy load on it. Doing so may cause the inverter to fail.

2.1.1 Precautions for installation

(1) Transportation

The inverter uses plastic parts. When carrying the inverter, handle it carefully to prevent damage to the parts.
Do not carry the inverter by holding the front or terminal block cover. Doing so may cause the inverter to fall.
Do not install and operate the inverter if it is damaged or its parts are missing.

(2) Surface on which to install the inverter

The inverter will reach a high temperature (up to about $150^{\circ} \mathrm{C}$) during operation. Install the inverter on a vertical wall surface made of nonflammable material (e.g., metal) to avoid the risk of fire.
Leave sufficient space around the inverter. In particular, keep sufficient distance between the inverter and other heat sources (e.g., braking resistors and reactors) if they are installed in the vicinity.

(3) Ambient temperature

Avoid installing the inverter in a place where the ambient temperature goes above or below the allowable range $\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$, as defined by the standard inverter specification.
Measure the temperature in a position about 5 cm distant from the bottom-center point of the inverter, and check that the measured temperature is within the allowable range.
Operating the inverter at a temperature outside this range will shorten the inverter life (especially the capacitor life).

(4) Humidity

Avoid installing the inverter in a place where the relative humidity goes above or below the allowable range (20% to $90 \% \mathrm{RH}$), as defined by the standard inverter specification.
Avoid a place where the inverter is subject to condensation.
Condensation inside the inverter will result in short circuits and malfunctioning of electronic parts. Also avoid places where the inverter is exposed to direct sunlight.

(5) Ambient air

Avoid installing the inverter in a place where the inverter is subject to dust, corrosive gases, combustible gases, flammable gases, grinding fluid mist, or salt water.
Foreign particles or dust entering the inverter will cause it to fail. If you use the inverter in a considerably dusty environment, install the inverter inside a totally enclosed panel.

Chapter 2 Installation and Wiring

(6) Installation method and position

Install the inverter vertically and securely with screws or bolts on a surface that is free from vibrations and that can bear the inverter weight. If the inverter is not installed vertically, its cooling performance may be degraded and tripping or inverter damage may result.

(7) When mounting multiple inverters in an enclosure with a ventilation fan, carefully design the layout of the ventilation fan, air intake port, and inverters. An inappropriate layout will reduce the inverter-cooling effect and raise the ambient temperature. Plan the layout so that the inverter ambient temperature will remain within the allowable range.

(Acceptable)

Position of ventilation fan

(8) Mounting in an enclosure

The internal fan releases the heat generated by the inverter from the upper part of the inverter. When it is necessary to install a device above the inverter, please ensure that the device is protected against this heat. When several inverters are mounted in the same cabinet the standard arrangement of the inverters is side-by-side with certain space as shown in the figure on the left below. If the inverters must be mounted one above the other in order to save the cabinet space or similar, the heat from the lower inverter may lead to temperature rise and breakdown of the higher inverter. Please ensure that the heat generated by the lower inverter does not affect the one above by installing a mechanical separation or similar (e.g. guide plate between the inverters as shown in the figure below right).

Horizontal mounting

Vertical mounting

When mounting several inverters in the same cabinet, design the cabinet so that the temperature inside the cabinet does not exceed the allowable specific range for the inverter (by using increased ventilation and/or enlarging the size of cabinet etc.)
(9) Reduction of enclosure size

If you mount the inverter inside an enclosure such that the heat sink of the inverter is positioned outside the enclosure, the amount of heat produced inside the enclosure can be reduced and likewise the size of the enclosure. Mounting the inverter in an enclosure with the heat sink positioned outside requires an optional dedicated special metal fitting. To mount the inverter in an enclosure with the heat sink positioned outside, cut out the enclosure panel according to the specified cutting dimensions. The cooling section (including the heat sink) positioned outside the enclosure has a cooling fan. Therefore, do not place the enclosure in any environment where it is exposed to waterdrops, oil mist, or dust.
(10) Approximate loss by inverter capacity

Inverter capacity (kW)	0.4	0.75	1.5	2.2	$3.7 / 4.0$	5.5	7.5	11	15	18.5
Loss with 70% load (W)	64	76	102	127	179	242	312	435	575	698
Loss with 100% load (W)	70	88	125	160	235	325	425	600	800	975
Efficiency at rated output (\%)	85.1	89.5	92.3	93.2	94.0	94.4	94.6	94.8	94.9	95.0

Inverter capacity (kW)	22	30	37	45	55	75	90	110	$132 / 150$
Loss with 70% load (W)	820	1100	1345	1625	1975	2675	3375	3900	4670
Loss with 100% load (W)	1150	1550	1900	2300	2800	3800	4800	5550	6650
Efficiency at rated output $(\%)$	95.0	95.0	95.1	95.1	95.1	95.2	95.2	95.2	95.2

2.1.2 Backing plate

(1) For models with 30 kW or less capacity

On the backing plate, cut the joints around each section to be cut off with cutting pliers or a cutter, remove them, and then perform the wiring.

(2) For the models with 37 kW to 75 kW

1) For wiring without using conduits

Cut an X in each rubber bushing of the backing plate with cutting pliers or a cutter, and then perform the wiring.

2) For wiring using conduits

Remove the rubber bushings from the holes to be used for wiring with conduits, and then fit conduits into the holes.

Note: Do not remove the rubber bushing from holes that are not used for wiring with a conduit.
If a cable is connected through the plate hole without a rubber bushing and conduit, the cable insulation may be damaged by the edge of the hole, resulting in a short circuit or ground fault.

Chapter 2 Installation and Wiring

2.2 Wiring

WARNING

- Be sure to ground the inverter. Otherwise, you run the risk of electric shock or fire.
- Commit wiring work to a qualified electrician. Otherwise, you run the risk of electric shock or fire.
- Before wiring, make sure that the power supply is off. Otherwise, you run the risk of electric shock or fire.
- Perform wiring only after installing the inverter. Otherwise, you run the risk of electric shock or injury.
- Do not remove rubber bushings from the wiring section. Otherwise, the edges of the wiring cover may damage the wire, resulting in a short circuit or ground fault.

CAUTION

- Make sure that the voltage of AC power supply matches the rated voltage of your inverter. Otherwise, you run the risk of injury or fire.
- Do not input single-phase power into the inverter. Otherwise, you run the risk of fire.
- Do not connect AC power supply to any of the output terminals (U, V, and W). Otherwise, you run the risk of injury or fire.
- Do not connect a resistor directly to any of the DC terminals (PD, P, and N). Otherwise, you run the risk of fire.
- Connect an earth-leakage breaker to the power input circuit. Otherwise, you run the risk of fire.
- Use only the power cables, earth-leakage breaker, and magnetic contactors that have the specified capacity (ratings). Otherwise, you run the risk of fire.
- Do not use the magnetic contactor installed on the primary and secondary sides of the inverter to stop its operation.
- Tighten each screw to the specified torque. No screws must be left loose. Otherwise, you run the risk of fire.
- Before operating, slide switch SW1 in the inverter, be sure to turn off the power supply. Otherwise, you run the risk of electric shock and injury.
- Since the inverter supports two modes of cooling-fan operation, the inverter power is not always off, even when the cooling fan is stopped. Therefore, be sure to confirm that the power supply is off before wiring. Otherwise, you run the risk of electric shock and injury.

2.2.1 Terminal connection diagram and explanation of terminals and switch settings

Chapter 2 Installation and Wiring

(1) Explanation of main circuit terminals

Symbol	Terminal name	Description
R, S, T (L1, L2, L3)	Main power input	Connect to the AC power supply. Leave these terminals unconnected when using a regenerative converter (HS900 series).
U, V, W (T1, T2, T3)	Inverter output	Connect a 3-phase motor.
PD, P $(+1,+)$	DC reactor connection	Remove the jumper from terminals PD and P, and connect the optional power factor reactor (DCL).
P, RB $(+$, RB $)$	External braking resistor connection	Connect the optional external braking resistor. (The RB terminal is provided on models with 30 kW or less capacity.)
P, N $(+,-)$	Regenerative braking unit connection	Connect the optional regenerative braking unit (BRD).
G $)$	Inverter ground	Connect to ground for grounding the inverter chassis by type-D grounding (for 200 V class models) or type-C grounding (for 400 V class models).

(2) Explanation of control circuit terminals

			Symbol	Terminal name	Description	Electric property
	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \bar{च} \end{aligned}$		L	Analog power supply (common)	This common terminal supplies power to frequency command terminals (O, O, and OI) and analog output terminals (AM and AMI). Do not ground this terminal.	
			H	Frequency setting power supply	This terminal supplies 10 VDC power to the O, O2, OI terminals.	Allowable load current: 20 mA or less
			O	Frequency command (voltage)	Input a voltage (0 to 10 VDC) as a frequency command. 10 V specifies the maximum frequency. To specify the maximum frequency with a voltage of 10 V or less, set the voltage using function "A014".	Input impedance: $10 \mathrm{k} \Omega$ Allowable input voltages: -0.3 $\text { to }+12 \mathrm{VDC}$
			O2	Auxiliary frequency command (voltage)	Input a voltage (0 to $\pm 10 \mathrm{VDC}$) as a signal to be added to the frequency command input from the O or OI terminal. You can input an independent frequency command from this terminal (O 2 terminal) alone by changing the setting.	Input impedance: $10 \mathrm{k} \Omega$ Allowable input voltages: 0 to ± 12 VDC
			OI	Frequency command (current)	Input a current (4 to 20 mA DC) as a frequency command. 20 mA specifies the maximum frequency. The OI signal is valid only when the AT signal is on. Assign the AT function to an intelligent input terminal.	Input impedance: $10 \mathrm{k} \Omega$ Maximum allowable current: 24 mA
			AM	Analog monitor (voltage)	This terminal outputs one of the selected " 0 to 10 VDC voltage output" monitoring items. The monitoring items available for selection include output frequency, output current, output torque (signed or unsigned), output voltage, input power, electronic thermal overload, LAD frequency, motor temperature, heat sink temperature, and general output.	Maximum allowable current: 2 mA Output voltage accuracy $\pm 20 \%$ $(\mathrm{Ta}=25 \pm 10$ degrees C$)$
			AMI	Analog monitor (current)	This terminal outputs one of the selected " 4 to 20 mA DC current output" monitoring items. The monitoring items available for selection include output frequency, output current, output torque (unsigned), output voltage, input power, electronic thermal overload, LAD frequency, motor temperature, heat sink temperature, and general output.	Allowable load impedance: 250Ω or less Output current accuracy $\pm 20 \%$ ($\mathrm{Ta}=25 \pm 10$ degrees C)
			FM	Digital monitor (voltage)	This terminal outputs one of the selected " 0 to 10 VDC voltage output (PWM output mode)" monitoring items. The monitoring items available for selection include output frequency, output current, output torque (unsigned), output voltage, input power, electronic thermal overload, LAD frequency, motor temperature, heat sink temperature, general output, digital output frequency, and digital current monitor. For the items "digital output frequency" and "digital current monitor," this terminal outputs a digital pulse signal at 0/10 VDC with a duty ratio of 50%.	Maximum allowable current: 1.2 mA Maximum frequency: 3.6 kHz
	$\begin{aligned} & \text { N} \\ & \stackrel{\rightharpoonup}{訁} \\ & \bar{\omega} \\ & \stackrel{0}{0} \\ & 0.0 \end{aligned}$		P24	Interface power supply	This terminal supplies 24 VDC power for contact input signals. If the source logic is selected, this terminal is used as a common contact input terminal.	Maximum allowable output current: 100 mA
			CM1	Interface power supply (common)	This common terminal supplies power to the interface power supply (P24), thermistor input (TH), and digital monitor (FM) terminals. If the sink logic is selected, this terminal is used as a common contact input terminal. Do not ground this terminal.	
			FW	Forward rotation command	Turn on this FW signal to start the forward rotation of the motor; turn it off to stop forward rotation after deceleration.	[Conditions for turning contact input on] Voltage across input and PLC: 18 VDC or more
			$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Intelligent input	Select eight of a total 56 functions, and assign these eight functions to terminals 1 to 8 . Note: If the emergency stop function is used, terminals 1 and 3 are used exclusively for the function. For details, refer to the SJ700D-3 instruction manual.	Input impedance between input and PLC: $4.7 \mathrm{k} \Omega$ Maximum allowable voltage across input and PLC: 27 VDC Load current with 27 VDC power: about 5.6 mA

			Symbol	Terminal name	Description	Electric property
			PLC	Intelligent input (common)	To switch the control logic between sink logic and source logic, change the jumper connection of this (PLC) terminal to another terminal on the control circuit terminal block. Jumper terminals P24 and PLC for the sink logic; jumper terminals CM1 and PLC for the sink logic. To use an external power supply to drive the contact inputs, remove the jumper, and connect the PLC terminal to the external interface circuit.	
			$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	Intelligent output	Select five of a total 51 functions, and assign these five functions to terminals 11 to 15 . If you have selected an alarm code using the function "C062", terminals 11 to 13 or 11 to 14 are used exclusively for the output of cause code for alarm (e.g., inverter trip). The control logic between each of these terminals and the CM2 terminal always follows the sink or source logic.	Voltage drop between each terminal and CM2 when output signal is on: 4 V or less Maximum allowable voltage: 27 VDC
	\bigcirc		CM2	Intelligent output (common)	This terminal serves as the common terminal for intelligent output terminals [11] to [15].	Maximum allowable current: 50 mA
			AL0 AL1 AL2	Intelligent relay output	Select functions from the 43 available, and assign the selected functions to these terminals, which serve as C contact output terminals. In the initial setting, these terminals output an alarm indicating that the inverter protection function has operated to stop inverter output.	(Maximum contact capacity) AL1-AL0: $250 \mathrm{VAC}, 2 \mathrm{~A}$ (resistance) or 0.2 A (inductive load) AL2-AL0: $250 \mathrm{VAC}, 1 \mathrm{~A}$ (resistance) or 0.2 A (inductive load) (Minimum contact capacity) $100 \mathrm{VAC}, 10 \mathrm{~mA}$ $5 \mathrm{VDC}, 100 \mathrm{~mA}$
$\begin{aligned} & \frac{00}{\frac{0}{4}} \\ & \frac{1}{4} \end{aligned}$		$\begin{aligned} & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	TH	External thermistor input	Connect to an external thermistor to make the inverter trip if an abnormal temperature is detected. The CM1 terminal serves as the common terminal for this terminal. [Recommended thermistor properties] Allowable rated power: 100 mW or more Impedance at temperature error: $3 \mathrm{k} \Omega$ The impedance to detect temperature errors can be adjusted within the range 0Ω to $9,999 \Omega$.	

(3) Explanation of switch

In case of using the emergency stop function*, you need to set the SW1 to "ON". Refer to the SJ700D-3 manuals for more information.

* This function does not comply with any functional safety norm.
*) Do not change the other switch, which is intended
 for factory adjustment

Chapter 2 Installation and Wiring

2.2.2 Wiring of the main circuit

(1) Wiring instructions

Before wiring, be sure to confirm that the Charge lamp on the inverter is turned off. When the inverter power has been turned on once, a dangerous high voltage remains in the internal capacitors for some time after power-off, regardless of whether the inverter has been operated. When rewiring after power-off, always wait 10 minutes or more after power-off, and check with a multimeter that the residual voltage across terminals P and N is zero to ensure safety during rewiring work.
(note) As for the 5.5 kW and 7.5 kW inverters, the washer on the main terminal screw (R, S, T, PD, P, N, U, V, W, RB) has two cutouts. Since those cutouts are to avoid the cable fixing portion of crimp terminal goes under the washer, it should be fixed in direction with those two cutouts in line with cable as described below. Otherwise, you run the risk of loose connection and fire.

1) Main power input terminals (R, S, and T)

- Install an earth-leakage breaker for circuit (wiring) protection between the power supply and main power input terminals (R, S, and T).
- Use an earth-leakage breaker with a high rating of a high-frequency sensitive current to prevent the breaker from malfunctioning under the influence of high frequency.
- When the protective function of the inverter operates, a fault or accident may have occurred in your system. Therefore, you are recommended to connect a magnetic contactor that interrupts the power supply to the inverter.
- Do not use the magnetic contactor connected to the power input terminal (primary side) or power output terminal (secondary side) of the inverter to start or stop the inverter. To start and stop inverter operation by external signals, use only the operation commands (FW and RV signals) that are input via control circuit terminals.
- This inverter does not support a single-phase input but supports only a three-phase input.

If you need to use a single-phase power input, contact your supplier or local Hitachi Distributor.

- Do not operate the inverter when an input phase is lost (input phase loss), otherwise the inverter may be damaged. Since the factory setting of the inverter disables the phase loss input protection, the inverter will go into the following status if a phase of power supply input is interrupted and not supplied to the inverter:
- R or T phase interrupted: The inverter does not power up.
- S phase interrupted: The inverter goes into single-phase operation, and may trip because of insufficient voltage or overcurrent, or be damaged.
Internal capacitors remain charged, even when the power input is under a phase loss condition. Therefore, touching an internal part may result in electric shock and injury.
When rewiring the main circuit, follow the instructions given in Item (1), "Wiring instructions."
- Carefully note that the internal converter module of the inverter may be damaged if:
- The imbalance of power voltage is 3% or more,
- The power supply capacity is at least 10 times as high as the inverter capacity and 500 kVA or more, or
- The power voltage changes rapidly.

Example: The above conditions may occur when multiple inverters are connected to each other by a short bus line or your system includes a phase-advanced capacitor that is turned on and off during operation.

- Do not turn the inverter power on and off more often than once every 3 minutes. Otherwise, the inverter may be damaged.

2) Inverter output terminals (U, V, and W)

- Use a cable thicker than the specified applicable cable for the wiring of output terminals to prevent the output voltage between the inverter and motor dropping. Especially at low frequency output, a voltage drop due to cable will cause the motor torque to decrease.
- Do not connect a phase-advanced capacitor or surge absorber on the output side of the inverter. If connected, the inverter may trip or the phase-advanced capacitor or surge absorber may be damaged.
- If the cable length between the inverter and motor exceeds 20 m (especially in the case of 400 V class models), the stray capacitance and inductance of the cable may cause a surge voltage at motor terminals, resulting in a motor burnout. A special filter to suppress the surge voltage is available. If you need this filter, contact your supplier or local Hitachi Distributor.
- When connecting multiple motors to the inverter, connect a thermal relay to the inverter output circuit for each motor.
- The RC rating of the thermal relay must be 1.1 times as high as the rated current of the motor. The thermal relay may go off too early, depending on the cable length. If this occurs, connect an AC reactor to the output of the inverter.

3) DC reactor connection terminals (PD and P)

- Use these terminals to connect the optional DC power factor reactor (DCL). As the factory setting, terminals P and PD are connected by a jumper. Remove this to connect the DCL.
- The cable length between the inverter and DCL must be 5 m or less.

Remove the jumper only when connecting the DCL. If the jumper is removed and the DCL is not
connected, power is not supplied to the main circuit of the inverter, and the inverter cannot operate.
4) External braking resistor connection terminals (P and RB) and regenerative braking unit connection terminals (P and N)

- Inverter models with 22 kW or less capacity have a built-in regenerative braking (BRD) circuit. If you need increased braking performance, connect an optional external braking resistor to terminals P and RB. Do not connect an external braking resistor with resistance less than the specified value. Such a resistor may cause damage to the regenerative braking (BRD) circuit.
- Inverter models with capacity of 30 kW or more do not have a built-in regenerative braking (BRD) circuit. Increasing the braking performance of these models requires an optional regenerative braking unit and an external braking resistor. Connect the P and N terminals of the optional regenerative braking unit to the P and N terminals of the inverters.
- The cable length between the inverter and optional regenerative braking unit must be 5 m or less, and the two cables must be twisted for wiring.
- Do not use these terminals for connecting any devices other than the optional external braking resistor and regenerative braking unit.

5) Inverter ground terminal $(G \ominus)$

- Be sure to ground the inverter and motor to prevent electric shock.
- According to the Electric Apparatus Engineering Regulations, connect 200 V class models to grounding electrodes constructed in compliance with type-D grounding (conventional type-III grounding with ground resistance of 100Ω or less) or the 400 V class models to grounding electrodes constructed in compliance with type-C grounding (conventional special type-III grounding with ground resistance of 10Ω or less).
- Use a grounding cable thicker than the specified applicable cable, and make the ground wiring as short as possible.
- When grounding multiple inverters, avoid a multi-drop connection of the grounding route and formation of a ground loop, otherwise the inverter may malfunction.

Chapter 2 Installation and Wiring

(2) Layout of main circuit terminals

The figures below show the terminal layout on the main circuit terminal block of the inverter.

Chapter 2 Installation and Wiring

Reference: Leakage current by inverter with model EMC filter enabled or disabled (reference data). The table below lists the reference currents that may leak from the inverter when the internal EMC filter is enabled or disabled. (Leakage current is in proportion to the voltage and frequency of input power.) Note that the values listed in the table below indicate the reference currents leaking from the inverter alone. The values exclude current leakage from external devices and equipment (e.g., power cables). The drive in the range from 75 kW to 150 kW doesn't have the switch to activate and deactivate the internal EMC filter. They complies EMC directive C3 level in standard condition.

	200 V class model (input power: $200 \mathrm{VAC}, 50 \mathrm{~Hz}$)				400 V class model (input power: $400 \mathrm{VAC}, 50 \mathrm{~Hz}$)				
	$\begin{gathered} 0.4 \mathrm{~kW} \\ \text { to } 3.7 \mathrm{~kW} \end{gathered}$	$\begin{gathered} 5.5 \mathrm{~kW} \\ \text { to } 11 \mathrm{~kW} \\ \hline \end{gathered}$	$\begin{aligned} & 15 \mathrm{~kW} \\ & \text { to } 37 \mathrm{~kW} \end{aligned}$	$\begin{gathered} 45 \mathrm{~kW} \\ \text { to } 55 \mathrm{~kW} \end{gathered}$	$\begin{gathered} 0.75 \mathrm{~kW} \\ \text { to } 3.7 \mathrm{~kW} \end{gathered}$	$\begin{gathered} 5.5 \mathrm{~kW} \\ \text { to } 11 \mathrm{~kW} \end{gathered}$	$\begin{aligned} & 15 \mathrm{~kW} \\ & \text { to } 37 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 45 \mathrm{~kW} \\ & \text { to } 55 \mathrm{~kW} \end{aligned}$	75 kW to 150kW
Internal EMC filter enabled	Ca. 2.5 mA	Ca. 48 mA	Ca. 23mA	Ca. 23mA	Ca. 5mA	Ca. 95 mA	Ca 56mA	Ca 56mA	-
Internal EMC filter disabled	Ca. 0.1 mA	Ca. 0.1 mA	Ca. 0.1 mA	Ca. 0.1 mA	Ca. 0.2 mA	Ca. 0.2 mA	Ca 0.2 mA	Ca. 0.2 mA	Ca. 0.2 mA

(3) Applicable peripheral equipment

(4) Recommended cable gauges, wiring accessories, and crimp terminals

Note: For compliance with CE and UL standards, see the safety precautions concerning EMC and the compliance with UL and cUL standards under Safety Instructions.
The table below lists the specifications of cables, crimp terminals, and terminal screw tightening torques for reference.

	Motor output (kW)	Applicable inverter model	Gauge of power line cable (mm^{2}) (Terminals: R, S, T, U, V, W, P, PD, and $\mathrm{N})$	$\begin{aligned} & \text { Grounding } \\ & \text { cable } \\ & \left(\mathrm{mm}^{2}\right) \end{aligned}$	External braking resistor across terminals P and RB (mm^{2})	Size of terminal screw	Crimp termin al	Tightening torque ($\mathrm{N}-\mathrm{m}$)	Applicable Earth-leakage breaker (ELB)	vice Magnetic contactor (MC)
	0.4	SJ700D-004L***3	1.25	1.25	1.25	M4	1.25-4	1.2(MAX1.8)	EX50B(5A)	HS10
	0.75	SJ700D-007L***3	1.25	1.25	1.25	M4	1.25-4	1.2(MAX1.8)	EX50B(10A)	HS10
	1.5	SJ700D-015L***3	2	2	2	M4	2-4	1.2(MAX1.8)	EX50B(15A)	HS10
	2.2	SJ700D-022L***3	2	2	2	M4	2-4	1.2(MAX1.8)	EX50B(20A)	HS20
	3.7	SJ700D-037L***3	3.5	3.5	3.5	M4	3.5-4	1.2(MAX1.8)	EX50B(30A)	HS20
	5.5	SJ700D-055L***3	5.5	5.5	5.5	M5	R5.5-5	2.4(MAX4.0)	EX50B(50A)	HS25
	7.5	SJ700D-075L***3	8	8	8	M5	R8-5	2.4(MAX4.0)	EX60(60A)	HS35
	11	SJ700D-110L***3	14	14	14	M6	R14-6	4.0(MAX4.4)	RXK100-H(75A)	HS50
	15	SJ700D-150L***3	22	22	22	M6	22-6	4.5(MAX4.9)	RXK100-H(100A)	H65C
	18.5	SJ700D-185L***3	30	22	30	M6	38-6	4.5(MAX4.9)	RXK100-H(100A)	H80C
	22	SJ700D-220L***3	38	30	38	M8	38-8	8.1(MAX8.8)	RXK225-H(150A)	H100C
	30	SJ700D-300L***3	$60(22 \times 2)$	30	-	M8	60-8	8.1(MAX8.8)	RXK225-H(200A)	H125C
	37	SJ700D-370L***3	$100(38 \times 2)$	38	-	M8	100-8	8.1(MAX20)	RXK225-H(225A)	H150C
	45	SJ700D-450L***3	$100(38 \times 2)$	38	-	M8	100-8	8.1(MAX20)	RXK225-H(225A)	H200C
	55	SJ700D-550L***3	$150(60 \times 2)$	60	-	M10	150-10	19.5(MAX22)	RX400B(350A)	H250C
$\begin{aligned} & \text { u } \\ & \frac{\tilde{5}}{5} \\ & > \\ & 8 \\ & 8 \end{aligned}$	0.75	SJ700D-007H***3	1.25	1.25	1.25	M4	1.25-4	1.2(MAX1.8)	EX50C(5A)	HS10
	1.5	SJ700D-015H***3	2	2	2	M4	2-4	1.2(MAX1.8)	EX50C(10A)	HS10
	2.2	SJ700D-022H***3	2	2	2	M4	2-4	1.2(MAX1.8)	EX50C(10A)	HS10
	3.7	SJ700D-037H***3	2	2	2	M4	2-4	1.2(MAX1.8)	EX50C(15A)	HS20
	5.5	SJ700D-055H***3	3.5	3.5	3.5	M5	R2-5	2.4(MAX4.0)	EX50C(30A)	HS20
	7.5	SJ700D-075H***3	3.5	3.5	3.5	M5	3.5-5	2.4(MAX4.0)	EX50C(30A)	HS25
	11	SJ700D-110H***3	5.5	5.5	5.5	M6	R5.5-6	4.0(MAX4.4)	EX50C(50A)	HS35
	15	SJ700D-150H***3	8	8	8	M6	8-6	4.5(MAX4.9)	EX60B(60A)	HS35
	18.5	SJ700D-185H***3	14	14	14	M6	14-6	4.5(MAX4.9)	EX60B(60A)	HS50
	22	SJ700D-220H***3	14	14	14	M6	14-6	4.5(MAX4.9)	RXK100-H(75A)	HS50
	30	SJ700D-300H***3	22	22	-	M6	22-6	4.5(MAX4.9)	RXK100-H(100A)	H65C
	37	SJ700D-370H***3	38	22	-	M8	38-8	8.1(MAX20)	RXK100-H(100A)	H80C
	45	SJ700D-450H***3	38	22	-	M8	38-8	8.1(MAX20)	RXK225-H(150A)	H100C
	55	SJ700D-550H***3	60	30	-	M8	R60-8	8.1(MAX20)	RXK225-H(175A)	H125C
	75	SJ700D-750H***3	$100(38 \times 2)$	38	-	M10	100-10	20.0(MAX22)	RXK225-H(225A)	H150C
	90	SJ700D-900H***3	$100(38 \times 2)$	38	-	M10	100-10	20.0(MAX22)	RXK225-H(225A)	H200C
	110	SJ700D-1100H***3	$150(60 \times 2)$	60	-	M10	150-10	20.0(MAX35)	RX400B(350A)	H250C
	132	SJ700D-1320HFF3 SJ700D-1320HFEF3	80×2	80	-	M10	80-10	20.0(MAX35)	RX400B(350A)	H300C
	150	SJ700D-1320HFF3	80×2	80	-	M10	80-10	20.0(MAX35)	RX400B(350A)	H300C

Note: Cable gauges indicate those of HIV cables (maximum heat resistance: $75^{\circ} \mathrm{C}$).
Note: *** is described as FF, FEF or FUF.
Note: Please use the round type crimp terminals (for the UL standard) suitable for the use electric wire when you connect the electric wire with the main circuit terminal stand. Please put on pressure to the crimp terminals 1 with a crimp tool that the terminal stand maker recommends.

Chapter 2 Installation and Wiring

(5) Connecting the control circuit to a power supply separately from the main circuit.

If the protective circuit of the inverter operates to open the magnetic contactor in the input power supply circuit, the inverter control circuit power is lost, and the alarm signal cannot be retained. To retain the alarm signal, connect control circuit terminals R0 and T0 to a power supply. In details, connect the control circuit power supply terminals R0 and T0 to the primary side of the magnetic contactor as shown below.
(Connection method)
Power-receiving specifications 200 V class model: 200 to $240 \mathrm{~V}(+10 \%,-15 \%)$ ($50 / 60 \mathrm{~Hz} \pm 5 \%$), (282 to 339 VDC) 400 V class model: 380 to $480 \mathrm{~V}(+10 \%,-15 \%)$ $(50 / 60 \mathrm{~Hz} \pm 5 \%),(537$ to 678 VDC$)$

1. Remove the connected cables.
2. Remove the J51 connector.
3. Connect the control circuit power supply cables to the control circuit power supply terminal block.

Note the following when connecting separate power supplies to control circuit power supply terminals (R0 and T0) and main circuit power supply terminals (R, S, and T):

- Use a cable thicker than $1.25 \mathrm{~mm}^{2}$ to connect the terminals R0 and T0 (terminal screw size: M4).
- Connect a 3 A fuse in the control circuit power supply line. (Tightening torque: 1.2 Nm , max torque: 1.4 Nm)
- If the control circuit power supply (connected to R0 and T0) is turned on earlier than the main circuit power supply (connected to R, S, and T), ground fault is not checked at power-on.
- When supplying DC power to the control circuit power supply terminals (R0 and T0), specify " 00 " as the "a/b (NO/NC)" selection (function code C031 to C036) for intelligent output terminals ([11] to [15]) and intelligent relay terminals (AL0, AL1, and AL2). If " 01 " is specified as the " $\mathrm{a} / \mathrm{b}(\mathrm{NO} / \mathrm{NC})$ " selection, output signals may chatter when the DC power supply is shut off.

2.2.3 Wiring of the control circuit

(1) Wiring instructions

1) Terminals L and CM1 are common to I/O signals and isolated from each other.

Do not connect these common terminals to each other or ground them.
Do not ground these terminals via any external devices. (Check that the external devices connected to these terminals are not grounded.)
2) Use a shielded, twisted-pair cable (recommended gauge: $0.75 \mathrm{~mm}^{2}$) for connection to control circuit terminals, and connect the cable insulation to the corresponding common terminal. (Tightening torque: 0.7 Nm , max torque: 0.8 Nm)
3) The length of cables connected to control circuit terminals must be 20 m or less. If the cable length exceeds 20 m unavoidably, you should use UP/DOWN function or current signal input with an isolation amplifier.
4) Separate the control circuit wiring from the main circuit wiring (power line) and relay control circuit wiring. If these wirings intersect with each other unavoidably, square them with each other. Otherwise, the inverter may malfunction.
5) Twist the cables connected from a thermistor to the thermistor input terminal (TH) and terminal CM1, and separate the twisted cables from other cables connected to other common terminals. Since very low current flows through the cables connected to the thermistor, separate the cables from those (power line cables) connected to the main circuit. The length of the cables connected to the thermistor must be 20 m or less.

6) When connecting a contact to a control circuit terminal (e.g., an intelligent input terminal), use a relay contact (e.g., crossbar twin contact) in which even a very low current or voltage will not trigger any contact fault.
7) When connecting a relay to an intelligent output terminal, also connect a surge-absorbing diode in parallel with the relay.
8) Do not connect analog power supply terminals H and L or interface power supply terminals P24 and CM1 to each other. Otherwise, the inverter may fail.
(2) Layout of control circuit terminals

| H | O2 | AM | FM | TH | FW | 8 | CM1 | 5 | 3 | 1 | 14 | 13 | 11 | AL1 | |
| :---: |
| L | O | OI | AMI | P24 | PLC | CM1 | 7 | 6 | 4 | 2 | 15 | CM2 | 12 | AL0 | AL2 |

Terminal screw size: M3 (Tightening torque:0.7Nm,max torque:0.8Nm)
(3) Switching the input control logic

- In the factory setting, the input control logic for terminal FW and intelligent input terminals is the sink logic. To switch the input control logic to the source logic, remove the jumper connecting terminals P24 and PLC on the control circuit block, and then connect terminals PLC and CM1 with the jumper.

Chapter 2 Installation and Wiring

(4) Connecting a programmable controller to intelligent input terminals

(5) Connecting a programmable controller to intelligent output terminals

2.2.4 Wiring of the digital operator

- You can operate the inverter with not only the digital operator mounted in the inverter as standard equipment but also an optional digital operator (OPE-S, OPE-SR, WOP).
- When you intend to remove the standard digital operator from the inverter and use it as remote equipment, request your local Hitachi Distributor to supply a connection cable, ICS-1 (1-meter cable) or ICS-3 (3-meter cable). If you prepare the cable by yourself, the following product is recommended: HUTP5 PC 4P-X-X: Straight cable equipped with connector at both ends (made by Hitachi Metal, Ltd.)
- The length of the connection cable must be 3 m or less. If a cable over 3 m is used, the inverter may malfunction.

Chapter 3 Operation

This chapter describes typical methods of operating the inverter, how to operate the digital operator, and how to make a test run of the inverter.
3.1 Operating Methods 3-2
3.2 How To Operate the Digital Operator (OPE-SBK) $\cdots 3$ 3-4

3.1 Operating Methods

- While power is supplied to the inverter, do not touch any terminal or internal part of the inverter, check signals, or connect or disconnect any wire or connector. Otherwise, you run the risk of electric shock or fire.
- Be sure to close the terminal block cover before turning on the inverter power. Do not open the terminal block cover while power is being supplied to the inverter or voltage remains inside. Otherwise, you run the risk of electric shock.
- Do not operate switches with wet hands. Otherwise, you run the risk of electric shock.
- While power is supplied to the inverter, do not touch the terminal of the inverter, even if it has stopped.

Otherwise, you run the risk of injury or fire.

- If the retry mode has been selected, the inverter will restart suddenly after a break in the tripping status. Stay away from the machine controlled by the inverter when the inverter is under such circumstances. (Design the machine so that human safety can be ensured, even when the inverter restarts suddenly.) Otherwise, you run the risk of injury.
- Do not select the retry mode for controlling an elevating or traveling device because output free-running status occurs in retry mode. Otherwise, you run the risk of injury or damage to the machine controlled by the inverter.
- If an operation command has been input to the inverter before a short-term power failure, the inverter may restart operation after the power recovery. If such a restart may put persons in danger, design a control circuit that disables the inverter from restarting after power recovery. Otherwise, you run the risk of injury.
- The [STOP] key is effective only when its function is enabled by setting. Prepare an emergency stop switch separately. Otherwise, you run the risk of injury.
- If an operation command has been input to the inverter before the inverter enters alarm status, the inverter will restart suddenly when the alarm status is reset. Before resetting the alarm status, make sure that no operation command has been input.
- While power is supplied to the inverter, do not touch any internal part of the inverter or insert a bar in it. Otherwise, you run the risk of electric shock or fire.

- Do not touch the heat sink, which heats up during the inverter operation. Otherwise, you run the risk of burn
injury.
- The inverter allows you to easily control the speed of motor or machine operations. Before operating the
inverter, confirm the capacity and ratings of the motor or machine controlled by the inverter. Otherwise, you run
the risk of injury and damage to machine.
- Install an external brake system if needed. Otherwise, you run the risk of injury.
- When using the inverter to operate a standard motor at a frequency of over 60 Hz , check the allowable motor
speeds with the manufacturers of the motor and the machine to be driven and obtain their consent before starting
inverter operation. Otherwise, you run the risk of damage to the motor and machine and injury
- During inverter operation, check the motor for the direction of rotation, abnormal sound, and vibrations.
Otherwise, you run the risk of damage to the machine driven by the motor.

You can operate the inverter in different ways, depending on how to input the operation and frequency-setting commands as described below.
This section describes the features of operating methods and the items required for operation.
(1) Entering operation and frequency-setting commands from the digital operator

This operating method allows you to operate the inverter through key operations on the standard digital operator mounted in the inverter or an optional digital operator.
When operating the inverter with a digital operator alone, you need not wire the control circuit terminals.
(Items required for operation)
*) Optional digital operator (not required when you use the standard digital operator)

(2) Entering operation and frequency-setting commands via control circuit terminals

This operating method allows you to operate the inverter via the input of operation signals from external devices (e.g., frequency-setting circuit and start switch) to control circuit terminals. The inverter starts operation when the input power supply is turned on and then an operation command signal (FW or RV) is turned on. You can select the frequency-setting method (setting by voltage specification or current specification) through the input to a control circuit terminal according to your system. For details, see Item (2), "Explanation of control circuit terminals," in Section 2.2.1. (Items required for operation)

1) Operation command input device: External switch or relay
2) Frequency-setting command input device: External device to input signals (0 to 10 VDC, -10 to +10 VDC, or 4 to 20 mA)
 Control circuit terminal block Operation command input device (switch)
(3) Entering operation and frequency-setting commands; both from a digital operator and via control circuit terminals
This operating method allows you to arbitrarily select the digital operator or control circuit terminals as the means to input operation commands and frequency-setting commands. (Items required for operation)
3) See the items required for the above two operating methods.
(4) Operation by Easy sequence function (Drive programming function)

The inverter can be operated by downloading the user's program made with the dedicated PC software, ProDriveNext. Please refer to "Easy sequence function" for details.
(5) Operation via communication

The inverter can be operated by an external communication device via Modbus-RTU or ASCII protocol (Hitachi protocol) through the TM2 terminal on the control terminal 1 board. Please refer to "Communication function" for details.

Chapter 3 Operation

3.2 How To Operate the Digital Operator (OPE-SBK)

3.2.1 Names and functions of components

Name	Function
POWER lamp	Lights when the control circuit power is on.
ALARM lamp	Lights to indicate that the inverter has tripped.
RUN (operation) lamp	Lights to indicate that the inverter is operating.
PRG (program) lamp	Lights when the monitor shows a value set for a function. This lamp starts blinking to indicate a warning (when the set value is invalid).
Monitor	Displays a frequency, output current, or set value.
Monitor lamps	Indicates the type of value and units displayed on the monitor. "Hz" (frequency), "V" (voltage), "A" (current), "kW" (electric power), and "\%" (percentage)
RUN key enable LED	Lights up when the inverter is ready to respond to the RUN key. (When this lamp is on, you can start the inverter with the RUN key on the digital operator.)
RUN key	Starts the inverter to run the motor. This key is effective only when the RUN command source setting A002 is set to "02": digital operator. (To use this key, confirm that RUN key enable LED is on.)
STOP/RESET key	Decelerates and stops the motor or resets the inverter from alarm status.
FUNC (function) key	Makes the inverter enter the monitor, function, or extended function mode.
STR (storage) key	Stores each set value. (Always press this key after changing a set value.)
1 (up) or 2 (down) key	Switches the inverter operation mode (among monitor, function, and extended function modes) or increases or decreases the value set on the monitor for a function.

3.2.2 Code display system and key operations

This section describes typical examples of digital operator operation (full display mode). Refer to SJ700D-3 Instruction manual for more information.

The initial display on the monitor screen after power-on depends on the setting of function "b038". For details, see "Initial-screen selection,"
When the setting of function "b038" is "01" (factory setting), the monitor initially shows
 setting of function "d001" (output frequency monitoring). Pressing the Func) key in this status changes the display to $d 001$

Note: The display contents on the monitor depend on the settings of functions "b037" (function code display restriction), "b038" (initial-screen selection), and "b039" (automatic setting of user parameters). Refer to SJ700D-3 Instruction manual for more information.
 regardless of the current display mode:

- Hold down the (FUNC) key for 3 seconds or more. The monitor shows 4.5 E .
- During this status, press the Funce key. The monitor will show only d M i or H.E. which is shown when the Func is pressed.
*) The monitor shows 0.50 only when the motor driven by the inverter is stopped. While the motor is running, the monitor shows an output frequency. The displayed monitor is depending on "b038" (initial-screen selection).

Chapter 3 Operation

Example of operation in full display mode ("b037" = "00") [Factory setting]
All parameters can be displayed in full display mode. If you use other display mode, refer to the SJ700D-3 Instruction Manual.

Key operation and transition of codes on display (in monitor or function mode)

Key operation and transition of codes on display (in extended function mode)

Key operation and transition of monitored data on display (in extended function mode)

Pressing the 4 or 2 key respectively scrolls up or down the code displayed in code display mode or increases or decreases the numerical data displayed in data display mode.
Press the 4 or 2 key until the desired code or numerical data is shown. To scroll codes or increase/decrease numerical data fast, press and hold the key.

Procedure for directly specifying or selecting a code

- You can specify or select a code or data by entering each digit of the code or data instead of scrolling codes or data in the monitor, function, or extended function mode.
- The following shows an example of the procedure for changing the monitor mode code "d001" displayed to extended function code "A029":

2) Change to the extended function mode.

- Character "d" in the leftmost digit (fourth digit from the right) starts blinking.

- Character "A" is blinking.
- Pressing the [STR] key determines the blinking character.
(*2)
FUNC
 Press the $\mathrm{STR}_{\text {key }}$ (to determine character " A ").
*1)
 (*3)

3) Change the third digit of the code.

the 2 key twice.
4) Change the first digit of the code.

- Character "1" in the first digit is blinking.

Fung
("A021" is displayed.)

Character " 2 " in the second digit is blinking.

4) Change the second digit of the code.

[^1](Memo)

Chapter 4 List of Data Settings

This chapter describes the data settings for the various functions of the inverter.
4.1 Precautions for Data Setting 4-2
4.2 Monitoring Mode 4-2
4.3 Function Mode 4-3
4.4 Extended Function Mode 4-4

Chapter 4 List of Data Settings

```
IMPORTANT! Please be sure to set the motor nameplate data into appropriate parameters to ensure proper operation and protection of the motor．
＊b012 is the motor overload protection value
＊A003 is the motor base frequency setting
＊H003 is the motor kW capacity
＊A082 is the motor voltage selection
＊H004 is the number of motor poles
```

Please refer to the appropriate pages in this guide and the Instruction Manual for further details．

4．1 Precautions for Data Setting

－FF，FEF and FUF are the parts of inverter model．
For example，in case of $1.5 \mathrm{~kW} / 400 \mathrm{~V}$ class，SJ700D－015H＊＊＊3（＊＊＊is described as FF，FEF or FUF．）
－Even though the inverter is driving the motor，you can change some parameters．If you specify＂ 10 ＂for the software lock mode selection（b031），you can change some more parameters．See the table below．
－In case of setting VT mode，some parameters and some data become invisible．Refer to the SJ700D－3 instruction manual for more information．

4．2 Monitoring Mode

With the default settings，the initial display on the operator after powering on is always the output frequency monitor （d001）．To change the initial display content，change the setting of the initial－screen selection（b038）as required．

Code	Function name	Monitored data or setting	Default			Change during RUN operation	
			FF	FEF	FUF	b031 $=10$	b031＝10
d001	Output frequency monitoring	0.00 to $99.99,100.0$ to 400.0 （Hz）	－			Allowed	Allowed
d002	Output current monitoring	0.0 to $999.9,1000$ to 9999 （A）	－			－	－
d003	Rotation direction monitoring	F（forward rotation），o（stopped），r（reverse rotation）	－			－	－
d004	Process variable（PV）， PID feedback monitoring	0.00 to $99.99,100.0$ to $999.9,1000$ ．to 9999. 1000 to 9999 （10000 to 99990 ），Г 100 to 「 999 （100000 to 999000 ）	－			－	－
d005	Intelligent input terminal status		－			－	－
d006	Intelligent output terminal status	（Example） Terminals 12 and 11：ON Terminals AL，15，14，and 13：OFF		－		－	－
d007	Scaled output frequency monitoring	0.00 to $99.99,100.0$ to $999.9,1000$ ．to 9999, 1000 to $3996(10000$ to 39960$)$		－		Allowed	Allowed
d008	Actual－frequency monitoring	-400 ．to $-100 .,-99.9$ to 0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$		－		－	－
d009	Torque command monitoring	－200．to $+200 .(\%)$	－			－	－
d010	Torque bias monitoring		－			－	－
d012	Torque monitoring		－			－	－
d013	Output voltage monitoring	0.0 to 600.0 （V）	－			－	－
d014	Power monitoring	0.0 to $999.9(\mathrm{~kW})$	－			－	－
d015	Cumulative power monitoring	0.0 to $999.9,1000$ ．to 9999.1000 to 9999 （10000 to 99990），「 100 to $\lceil 999$（100000 to 999000 ）		－		－	－
d016	Cumulative operation RUN time monitoring	0．to 9999 ．， 1000 to 9999 （10000 to 99990），「 100 to 「 999 （100000 to 999000 ）（hr）		－		－	－
d017	Cumulative power－on time monitoring			－		－	－
d018	Heat sink temperature monitoring	－020．to $200.0\left({ }^{\circ} \mathrm{C}\right)$		－		－	－
d019	Motor temperature monitoring			－		－	－

Code	Function name	Monitored data or setting	Default			Change during RUN operation	
			FF	FEF	FUF	b031 $\ddagger 10$	b031=10
d022	Life-check monitoring			-		-	-
d023	Program counter	0 to 1024		-		-	-
d024	Program number monitoring	0000 to 9999		-		-	-
d025	User monitor 0	-2147483647 to 2147483647 (upper 4 digits including "-")		-		-	-
d026	User monitor 1			-		-	-
d027	User monitor 2			-		-	-
d028	Pulse counter	0 to 2147483647 (upper 4 digits)		-		-	-
d029	Position setting monitor	-1073741823 to 1073741823 (upper 4 digits including "-")		-		-	-
d030	Position feedback monitor			-		-	-
d031	Clock monitor	* In case you use WOP (option), this monitor is activated.		-		-	-
d060	Inverter mode monitor	I-C(CT)/ I-v(VT)		-		-	-
d080	Trip Counter	0. to 9999., 1000 to 6553 (10000 to 65530) (times)		-		-	-
d081	Trip monitoring 1	Factor, frequency (Hz), current (A), voltage across P-N (V), running time (hours), power-on time (hours)		-		-	-
d082	Trip monitoring 2			-		-	-
d083	Trip monitoring 3			-		-	-
d084	Trip monitoring 4			-		-	-
d085	Trip monitoring 5			-		-	-
d086	Trip monitoring 6			-		-	-
d090	Programming error monitoring	Warning code		-		-	-
d102	DC voltage monitoring	0.0 to 999.9 (V)		-		-	-
d103	BRD load factor monitoring	0.0 to 100.0 (\%)		-		-	-
d104	Electronic thermal overload monitoring			-		-	-

(Note) CT : Constant torque mode, VT : Variable torque mode, you can set CT or VT by b049.

4.3 Function Mode

Code	Function name	Monitored data or setting		Default		Change during RUN operation	
			FF	FEF	FUF	b031 $=10$	b031=10
F001	Output frequency setting	0.0, "start frequency" to "maximum frequency" (or maximum frequency, 2nd/3rd motors) (Hz) 0.0 to 100.0 (when PID function is enabled)		0.00		Allowed	Allowed
F002	Acceleration time setting	0.01 to $99.99,100.0$ to $999.9,1000$. to 3600 . (s)		30.00		Allowed	Allowed
F202	Acceleration time setting, 2nd motor			30.00		Allowed	Allowed
F302	Acceleration time setting, 3rd motor			30.00		Allowed	Allowed
F003	Deceleration time setting	0.01 to $99.99,100.0$ to $999.9,1000$. to 3600 . (s)		30.00		Allowed	Allowed
F203	Deceleration time setting, 2nd motor			30.00		Allowed	Allowed
F303	Deceleration time setting, 3rd motor		30.00			Allowed	Allowed
F004	Keypad Run key routing	00 (forward rotation), 01 (reverse rotation)		00		Not	Not

Chapter 4 List of Data Settings

4.4 Extended Function Mode

Code		Function name	Monitored data or setting	Default			Change during RUN operation		
		FF			FUF	b031 10	b031=10		
	A001		Frequency source setting	00 (keypad potentiometer) (*1), 01 (control circuit terminal block), 02 (digital operator), 03 (RS485), 04 (option 1), 05 (option 2), 06 (pulse-string input), 07 (easy sequence), 10 (operation function result)	02	01	01	Not	Not
	A002	Run command source setting	01 (control circuit terminal block), 02 (digital operator), 03 (RS485), 04 (option 1), 05 (option 2)	02	01	01	Not	Not	
	A003	Base frequency setting	30. to "Maximum frequency " (Hz)	60.	50.	60.	Not	Not	
	A203	Base frequency setting, 2nd motor	30. to "Maximum frequency, 2nd motor" (Hz)	60.	50.	60.	Not	Not	
	A303	Base frequency setting, 3rd motor	30. to "Maximum frequency, 3rd motor" (Hz)	60.	50.	60.	Not	Not	
	A004	Maximum frequency setting	"Base frequency" (Hz) to 400. (Hz)	60.	50.	60.	Not	Not	
	A204	Maximum frequency setting, 2nd motor	"Base frequency, 2nd motor" (Hz) to 400. (Hz)	60.	50.	60.	Not	Not	
	A304	Maximum frequency setting, 3rd motor	"Base frequency, 3rd motor" (Hz) to 400. (Hz)	60.	50.	60.	Not	Not	
	A005	[AT] selection	00 (switching between O and OI terminals), 01 (switching between O and O 2 terminals), 02 (switching between O terminal and keypad potentiometer) (*1), 03 (switching between OI terminal and keypad potentiometer) (*1), 04 (switching between O2 and keypad potentiometer) (*1)		00		Not	Not	
	A006	[O2] selection	00 (single), 01 (auxiliary frequency input via O and OI terminals) nonreversible), 02 (auxiliary frequency input via O and OI terminals) (reversible), 03 (disabling O 2 terminal)		03		Not	Not	
	A011	[O]-[L] input active range start frequency	0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$		0.00		Not	Allowed	
	A012	[O]-[L] input active range end frequency	0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$ (In case of setting 0.00 , internal setting is "Maximum frequency ")		0.00		Not	Allowed	
	A013	[O]-[L] input active range start voltage	0 . to "[O]-[L] input active range end voltage" (\%)		0.		Not	Allowed	
	A014	[O]-[L] input active range end voltage	"[O]-[L] input active range start voltage" to 100. (\%)		100.		Not	Allowed	
	A015	[O]-[L] input active range start frequency selection	00 (external start frequency), $01(0 \mathrm{~Hz}$)		01		Not	Allowed	
	A016	External frequency filter time const.	1. to 30 . or 31 . (500 ms filter $\pm 0.1 \mathrm{~Hz}$ with hysteresis)		31.		Not	Allowed	
	A017	Easy sequence function selection	00 (disabling), 01 (enabling)		00		Not	Not	
	A019	Multispeed operation selection	00 (binary: 16 speeds selectable with 4 terminals), 01 (bit: 8 speeds selectable with 7 terminals)		00		Not	Not	
	A020	Multispeed frequency setting	0.0 or "start frequency" to "maximum frequency" (Hz)		0.00		Allowed	Allowed	
	A220	Multispeed frequency setting, 2nd motor	0.0 or "start frequency" to "maximum frequency, 2nd motor" (Hz)		0.00		Allowed	Allowed	
	A320	Multispeed frequency setting, 3rd motor	0.0 or "start frequency" to "maximum frequency, 3rd motor" (Hz)		0.00		Allowed	Allowed	
	A021	Multispeed 1 setting	0.0 or "start frequency" to "1st maximum frequency" (Hz)		0.00		Allowed	Allowed	
	A022	Multispeed 2 setting	0.0 or "start frequency" to "2nd maximum frequency" (Hz)		0.00		Allowed	Allowed	
	A023	Multispeed 3 setting	0.0 or "start frequency" to "3rd maximum frequency" (Hz)		0.00		Allowed	Allowed	
	A024	Multispeed 4 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A025	Multispeed 5 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A026	Multispeed 6 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A027	Multispeed 7 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A028	Multispeed 8 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A029	Multispeed 9 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A030	Multispeed 10 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A031	Multispeed 11 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A032	Multispeed 12 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A033	Multispeed 13 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A034	Multispeed 14 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A035	Multispeed 15 setting	0.0 or "start frequency" to "n-th maximum frequency" (Hz) ($\mathrm{n}=1$ to 3)		0.00		Allowed	Allowed	
	A038	Jog frequency setting	"Start frequency" to 9.99 (Hz)		1.00		Allowed	Allowed	
	A039	Jog stop mode	00 (free-running after jogging stops [disabled during operation]), 01 (deceleration and stop after jogging stops [disabled during operation]), 02 (DC braking after jogging stops [disabled during operation]), 03 (free-running after jogging stops [enabled during operation]), 04 (deceleration and stop after jogging stops [enabled during operation]), 05 (DC braking after jogging stops [enabled during operation])		00		Not	Allowed	

[^2]| Code | | Function name | Monitored data or setting | Default | Change during RUN operation | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | FF | | b031 10 | b031=10 |
| | A041 | | Torque boost method selection | 00 (manual torque boost), 01 (automatic torque boost) | 00 | Not | Not |
| | A241 | Torque boost method selection, 2nd motor | 00 | | Not | Not |
| | A042 | Manual torque boost value | 0.0 to 20.0 (\%) | 1.0 | Allowed | Allowed |
| | A242 | Manual torque boost value, 2nd motor | | 1.0 | Allowed | Allowed |
| | A342 | Manual torque boost value, 3rd motor | | 1.0 | Allowed | Allowed |
| | A043 | Manual torque boost frequency adjustment | 0.0 to 50.0 (\%) | 5.0 | Allowed | Allowed |
| | A243 | Manual torque boost frequency adjustment, 2nd motor | | 5.0 | Allowed | Allowed |
| | A343 | Manual torque boost frequency adjustment, 3rd motor | | 5.0 | Allowed | Allowed |
| | A044 | V / F characteristic curve selection, 1st motor | 00 (VC), 01 (VP), 02 (free V/f), 03 (sensorless vector control), $04(0 \mathrm{~Hz}$ sensorless vector control)(only CT), 05(vector with sensor)(only CT) | 00 | Not | Not |
| | A244 | V/F characteristic curve selection, 2nd motor | 00 (VC), 01 (VP), 02 (free V/f), 03 (sensorless vector control), $04(0 \mathrm{~Hz}$ sensorless vector control)(only CT) | 00 | Not | Not |
| | A344 | V/F characteristic curve selection, 3rd motor | $00(\mathrm{VC}), 01(\mathrm{VP})$ | 00 | Not | Not |
| | A045 | V/f gain setting | 20. to 100. (\%) | 100. | Allowed | Allowed |
| | A046 | Voltage compensation gain setting for automatic torque boost. 1st motor | 0. to 255. | 100. | Allowed | Allowed |
| | A246 | Voltage compensation gain setting for automatic torque boost, 2nd motor | | 100. | Allowed | Allowed |
| | A047 | Slippage compensation gain setting for automatic torque boost, 1st motor | 0. to 255. | 100. | Allowed | Allowed |
| | A247 | Slippage compensation gain setting for automatic torque boost, 2nd motor | | 100. | Allowed | Allowed |
| 00E0000 | A051 | DC braking enable | 00 (disabling), 01 (enabling), 02 (set frequency only) | 00 | Not | Allowed |
| | A052 | DC braking frequency setting | 0.00 to $99.99,100.0$ to 400.0 (Hz) | 0.50 | Not | Allowed |
| | A053 | DC braking wait time | 0.0 to 5.0 (s) | 0.0 | Not | Allowed |
| | A054 | DC braking force during deceleration | $\begin{array}{\|ll} \hline 0 . \text { to } 100 .(\%) & <0 . \text { to } 80 .(\%)>(\text { In case of CT) } \\ 0 \text {. to } 70 .(\%) & <0 . \text { to } 50 .(\%)>(\text { In case of VT) } \\ \hline \end{array}$ | 20. | Not | Allowed |
| | A055 | DC braking time for deceleration | 0.0 to 60.0 (s) | 0.5 | Not | Allowed |
| | A056 | DC braking/edge or level detection for [DB] input | 00 (edge operation), 01 (level operation) | 01 | Not | Allowed |
| | A057 | DC braking force for starting | $\begin{array}{\|ll} \hline \text { 0. to } 100 .(\%) & <0 . \text { to } 80 .(\%)>(\text { In case of CT) } \\ 0 \text {. to } 70 .(\%) & <0 . \text { to } 50 .(\%)>(\text { In case of VT) } \\ \hline \end{array}$ | 0. | Not | Allowed |
| | A058 | DC braking time for starting | 0.0 to 60.0 (s) | 0.0 | Not | Allowed |
| | A059 | DC braking carrier frequency setting | $\begin{array}{\|l} 0.5 \text { to } 15.0(\mathrm{kHz})<0.5 \text { to } 10.0(\mathrm{kHz})>(\text { In case of CT }) \\ 0.5 \text { to } 12.0(\mathrm{kHz})<0.5 \text { to } 8.0(\mathrm{kHz})>(\text { In case of VT) } \\ \hline \end{array}$ | $\begin{gathered} 5.0<3.0>(\mathrm{CT}) \\ 3.0(\mathrm{VT}) \\ \hline \end{gathered}$ | Not | Not |
| | A061 | Frequency upper limit setting | 0.00 or "1st minimum frequency limit" to "maximum frequency" (Hz) | 0.00 | Not | Allowed |
| | A261 | Frequency upper limit setting, 2nd motor | 0.00 or "2nd minimum frequency limit" to "maximum frequency, 2nd motor" (Hz) | 0.00 | Not | Allowed |
| | A062 | Frequency lower limit setting | 0.00 or "start frequency" to "maximum frequency limit" (Hz) | 0.00 | Not | Allowed |
| | A262 | Frequency lower limit setting, 2nd motor | 0.00 or "start frequency" to "maximum frequency, 2nd motor limit" (Hz) | 0.00 | Not | Allowed |
| | A063 | Jump (center) frequency setting 1 | 0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$ | 0.00 | Not | Allowed |
| | A064 | Jump (hysteresis) frequency width setting 1 | 0.00 to 10.00 (Hz) | 0.50 | Not | Allowed |
| | A065 | Jump (center) frequency setting 2 | 0.00 to $99.99,100.0$ to 400.0 (Hz) | 0.00 | Not | Allowed |
| | A066 | Jump (hysteresis) frequency width setting 2 | 0.00 to 10.00 (Hz) | 0.50 | Not | Allowed |
| | A067 | Jump (center) frequency setting 3 | 0.00 to $99.99,100.0$ to 400.0 (Hz) | 0.00 | Not | Allowed |
| | A068 | Jump (hysteresis) frequency width setting 3 | 0.00 to 10.00 (Hz) | 0.50 | Not | Allowed |
| | A069 | Acceleration stop frequency setting | 0.00 to $99.99,100.0$ to 400.0 (Hz) | 0.00 | Not | Allowed |
| | A070 | Acceleration stop time frequency setting | 0.0 to 60.0 (s) | 0.0 | Not | Allowed |
| 을0000 | A071 | PID Function Enable | 00 (disabling), 01 (enabling), 02 (enabling inverted-data output) | 00 | Not | Allowed |
| | A072 | PID proportional gain | 0.2 to 5.0 | 1.0 | Allowed | Allowed |
| | A073 | PID integral time constant | 0.0 to 999.9, 1000. to 3600. (s) | 1.0 | Allowed | Allowed |
| | A074 | PID derivative gain | 0.00 to 99.99, 100.0 (s) | 0.00 | Allowed | Allowed |
| | A075 | PV scale conversion | 0.01 to 99.99 | 1.00 | Not | Allowed |
| | A076 | PV source setting | 00 (input via OI), 01 (input via O), 02 (external communication), 03 (pulse-string frequency input), 10 (operation result output) | 00 | Not | Allowed |
| | A077 | Output of inverted PID deviation | 00(OFF), 01 (ON) | 00 | Not | Allowed |
| | A078 | PID variation range | 0.0 to 100.0 (\%) | 0.00 | Not | Allowed |
| | A079 | PID feed forward selection | 00 (disabled), 01 (O input), 02 (OI input), 03 (O2 input) | 00 | Not | Allowed |

(Note) < > indicate the setting range of 75 to 150 kW
(Note) CT : Constant torque mode, VT : Variable torque mode, you can set CT or VT by b049

Chapter 4 List of Data Settings

Code		Function name	Monitored data or setting	Default			Change during RUN operation		
		FF		FEF	FUF	b031 110	b031=10		
$\underset{\sim}{\underset{z}{c}}$	A081		AVR function select	00 (always on), 01 (always off), 02 (off during deceleration)	02	00	00	Not	Not
	A082	AVR voltage select	$\begin{aligned} & 200 \text { V class: } 200,215,220,230,240(\mathrm{~V}) \\ & 400 \mathrm{~V} \text { class: } 380,400,415,440,460,480(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & 200 / \\ & 400 \\ & \hline \end{aligned}$	$\begin{gathered} 230 / \\ 400 \end{gathered}$	$\begin{array}{r} 2301 \\ 460 \\ \hline \end{array}$	Not	Not	
	A085	Operation mode selection	00 (normal operation), 01 (energy-saving operation) 02 (fuzzy operation)(only CT)	00			Not	Not	
	A086	Energy saving mode tuning	0.0 to 100.0		50.0		Allowed	Allowed	
	A092	Acceleration (2) time setting	0.01 to $99.99,100.0$ to $999.9,1000$. to 3600 . (s)		15.00		Allowed	Allowed	
	A292	Acceleration (2) time setting, 2nd motor			15.00		Allowed	Allowed	
	A392	Acceleration (2) time setting, 3rd motor			15.00		Allowed	Allowed	
	A093	Deceleration (2) time setting	0.01 to $99.99,100.0$ to $999.9,1000$. to 3600 . (s)		15.00		Allowed	Allowed	
	A293	Deceleration (2) time setting, 2nd motor			15.00		Allowed	Allowed	
	A393	Deceleration (2) time setting, 3rd motor			15.00		Allowed	Allowed	
	A094	Select method to switch to Acc2/Dec2 profile	00 (switching by 2CH terminal), 01 (switching by setting), 02 (switching only when rotation is reversed)		00		Not	Not	
	A294	Select method to switch to Acc2/Dec2, 2nd motor			00		Not	Not	
	A095	Acc1 to Acc2 frequency transition point	0.00 to 99.99, 100.0 to $400.0(\mathrm{~Hz})$		0.00		Not	Not	
	A295	Acc1 to Acc2 frequency transition point, 2nd motor			0.00		Not	Not	
	A096	Dec1 to Dec2 frequency transition point	0.00 to 99.99, 100.0 to $400.0(\mathrm{~Hz})$		0.00		Not	Not	
	A296	Dec1 to Dec2 frequency transition point, 2nd motor			0.00		Not	Not	
	A097	Acceleration curve selection	00 (linear), 01 (S curve), 02 (U curve), 03 (inverted-U curve), 04 (EL-S curve)		00		Not	Not	
	A098	Deceleration curve setting			00		Not	Not	
	A101	[OI]-[L] input active range start frequency	0.00 to 99.99, 100.0 to $400.0(\mathrm{~Hz})$		0.00		Not	Allowed	
	A102	[OI]-[L] input active range end frequency	0.00 to $99.99,100.0$ to 400.0 (Hz) (In case of setting 0.00 , internal setting is "Maximum frequency ")		0.00		Not	Allowed	
	A103	[OI]-[L] input active range start current	0 . to "[OI]-[L] input active range end current" (\%)		20.		Not	Allowed	
	A104	[OI]-[L] input active range end current	"[OI]-[L] input active range start current" to 100. (\%)		100.		Not	Allowed	
	A105	[OI]-[L] input start frequency enable	00 (external start frequency), $01(0 \mathrm{~Hz}$)		00		Not	Allowed	
	A111	[O2]-[L] input active range start frequency	-400 . to -100., -99.9 to 0.00 to $99.99,100.0$ to 400.0 (Hz)		0.00		Not	Allowed	
	A112	[O2]-[L] input active range end frequency	-400 . to -100., -99.9 to 0.00 to $99.99,100.0$ to 400.0 (Hz)		0.00		Not	Allowed	
	A113	[O2]-[L] input active range start voltage	-100 to 02 end-frequency rate (\%)		-100.		Not	Allowed	
	A114	[O2]-[L] input active range end voltage	"02 start-frequency rate" to 100. (\%)		100.		Not	Allowed	
	A131	Acceleration curve constants setting	01 (smallest swelling) to 10 (largest swelling)		02		Not	Allowed	
花花	A132	Deceleration curve constants setting	01 (smallest swelling) to 10 (largest swelling)		02		Not	Allowed	
	A141	Operation-target frequency selection 1	```00 (digital operator), 01 (keypad potentiometer), 02 (input via O), 03 (input via OI), 04 (external communication), 05 (option 1), 06 (option 2), 07 (pulse-string frequency input)```		02		Not	Allowed	
	A142	Operation-target frequency selection 2			03		Not	Allowed	
	A143	Operator selection	00 (addition: A141 + A142), 01 (subtraction: A141 - A142), 02 (multiplication: A141 x A142)		00		Not	Allowed	
	A145	Frequency to be added	0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$		0.00		Not	Allowed	
	A146	Sign of the frequency to be added	$\begin{aligned} & \hline 00 \text { (frequency command + A145), } \\ & 01 \text { (frequency command - A145) } \end{aligned}$		00		Not	Allowed	
	A150	EL-S-curve acceleration ratio 1	0. to 50. (\%)		25.		Not	Not	
	A151	EL-S-curve acceleration ratio 2			25.		Not	Not	
	A152	EL-S-curve deceleration ratio 1	0. to 50. (\%)		25.		Not	Not	
	A153	EL-S-curve deceleration ratio 2			25.		Not	Not	

*1 This setting is valid only when the OPE-SR is connected.
(Note) CT : Constant torque mode, VT : Variable torque mode, you can set CT or VT by b049.

Code		Function name	Monitored data or setting	Default		Change during RUN operation		
		FF		FEF/FUF	b031 $\ddagger 10$	b031=10		
	b001		Selection of restart mode	00 (tripping), 01 (starting with 0 Hz), 02 (starting with matching frequency), 03 (tripping after deceleration and stopping with matching frequency), 04 (restarting with active matching frequency)		00	Not	Allowed
$\stackrel{7}{5}$	b002	Allowable under-voltage power failure time	0.3 to 25.0 (s)		1.0	Not	Allowed	
O	b003	Retry wait time before motor restart	0.3 to 100.0 (s)		1.0	Not	Allowed	
	b004	Instantaneous power failure/under-voltage trip alarm enable	00 (disabling), 01 (enabling), 02 (disabling during stopping and decelerating to stop)		00	Not	Allowed	
$\left\|\begin{array}{l} 0 \\ 3 \\ 0 \\ 0 \end{array}\right\|$	b005	Number of restarts on power failure/under-voltage trip events	00 (16 times), 01 (unlimited)		00	Not	Allowed	
觡	b006	Input phase loss detection enable	00 (disabling), 01 (enabling)		00	Not	Allowed	
旁	b007	Restart frequency threshold	0.00 to $99.99,100.0$ to 400.0 (Hz)		0.00	Not	Allowed	
	b008	Selection of retry after tripping	00 (tripping), 01 (starting with 0 Hz), 02 (starting with matching frequency), 03 (tripping after deceleration and stopping with matching frequency), 04 (restarting with active matching frequency)		00	Not	Allowed	
$\stackrel{\square}{5}$	b009	Selection of retry after under voltage	00 (16 times), 01 (unlimited)		00	Not	Allowed	
$\left.\begin{gathered} \underset{5}{0} \\ 0 \\ \end{gathered} \right\rvert\,$	b010	Selection of retry count after overvoltage or overcurrent	1 to 3 (times)		3	Not	Allowed	
	b011	Retry wait time after tripping	0.3 to 100.0 (s)		1.0	Not	Allowed	
	b012	Electronic thermal setting	0.20 x "rated current" to 1.00 x "rated current" (A)	Rated current		Not	Allowed	
	b212	Electronic thermal setting, 2nd motor		Rated current		Not	Allowed	
	b312	Electronic thermal setting, 3rd motor		Rated current		Not	Allowed	
	b013	Electronic thermal characteristic	00 (reduced-torque characteristic), 01 (constant-torque characteristic), 02 (free setting)	00	01	Not	Allowed	
	b213	Electronic thermal characteristic, 2nd motor		00	01	Not	Allowed	
	b313	Electronic thermal characteristic, 3rd motor		00	01	Not	Allowed	
	b015	Free setting, electronic thermal frequency (1)	0. to $400 .(\mathrm{Hz})$		0.	Not	Allowed	
	b016	Free setting, electronic thermal current (1)	0.0 to rated current (A)		0.0	Not	Allowed	
	b017	Free setting, electronic thermal frequency (2)	0. to 400. (Hz)		0.	Not	Allowed	
	b018	Free setting, electronic thermal current (2)	0.0 to rated current (A)		0.0	Not	Allowed	
	b019	Free setting, electronic thermal frequency (3)	0. to $400 .(\mathrm{Hz})$		0.	Not	Allowed	
	b020	Free setting, electronic thermal current (3)	0.0 to rated current (A)		0.0	Not	Allowed	
	b021	Overload restriction operation mode	00 (disabling), 01 (enabling during acceleration and deceleration), 02 (enabling during constant speed), 03 (enabling during acceleration and deceleration (increasing the speed during regeneration))		01	Not	Allowed	
$\begin{aligned} & \text { E } \\ & \text { Ey } \\ & \text { Ed } \end{aligned}$	b022	Overload restriction setting	$\begin{aligned} & 0.20 \mathrm{x} \text { "rated current" to } 2.00 \mathrm{x} \text { "rated current" (A) } \\ & <0.20 \mathrm{x} \text { "rated current" to } 1.80 \mathrm{x} \text { "rated current" (A)> } \\ & \text { (In case of CT) } \\ & 0.20 \mathrm{x} \text { "rated current" to } 1.50 \mathrm{x} \text { "rated current" (A) } \\ & \text { (In case of VT) } \end{aligned}$		$\begin{aligned} & \text { ed current } \\ & 50 \text { (CT) } \\ & \text { ed current } \\ & 0(\mathrm{VT}) \end{aligned}$	Not	Allowed	
$\stackrel{\square}{=}$	b023	Deceleration rate at overload restriction	0.10 to 30.00 (s)		1.00	Not	Allowed	
$\begin{array}{\|c} \overline{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}$	b024	Overload restriction operation mode (2)	00 (disabling), 01 (enabling during acceleration and deceleration), 02 (enabling during constant speed), 03 (enabling during acceleration and deceleration (increasing the speed during regeneration))		01	Not	Allowed	
$\begin{aligned} & \text { I } \\ & \tilde{E} \\ & . \bar{U} \\ & .0 \\ & : E \end{aligned}$	b025	Overload restriction setting (2)	0.20 x "rated current" to 1.50 x "rated current" (A) < 0.20 x "rated current" to 1.50 x "rated current" (A)>		d current 50 (CT) 0 (VTrent 1.00	Not	Allowed	
O	b026	Deceleration rate at overload restriction (2)	0.10 to 30.00 (s)		1.00	Not	Allowed	
]	b027	Overcurrent suppression enable	00 (disabling), 01 (enabling)		01	Not	Allowed	
$\begin{aligned} & 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	b028	Active frequency matching, scan start frequency	0.20 x "rated current" to 2.00 x "rated current" (A) $<0.20 \mathrm{x}$ "rated current" to 1.80 x "rated current" (A)> (In case of CT) 0.20 x "rated current" to 1.50 x "rated current" (A) (In case of VT)	Rate	d current	Not	Allowed	
	b029	Active frequency matching, scan-time constant	0.10 to 30.00 (s)		0.50	Not	Allowed	
	b030	Active frequency matching, restart frequency select	00 (frequency at the last shutoff), 01 (maximum frequency), 02 (set frequency)		00	Not	Allowed	
$\begin{aligned} & \frac{y}{u} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & y \\ & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	b031	Software lock mode selection	00 (disabling change of data other than "b031" when SFT is on), 01 (disabling change of data other than "b031" and frequency settings when SFT is on), 02 (disabling change of data other than "b031"), 03 (disabling change of data other than "b031" and frequency settings), 10 (enabling data changes during operation)		01	Not	Allowed	

(Note) < >indicate the setting range of 75 to 150 kW
(Note) CT : Constant torque mode, VT : Variable torque mode, you can set CT or VT by b049.

Chapter 4 List of Data Settings

Code		Function name	Monitored data or setting	Default	Change during RUN operation		
		FF ${ }^{\text {FEF }}$ FUF		b031 $=10$	b031=10		
$\begin{aligned} & \stackrel{\rightharpoonup}{む} \\ & \stackrel{5}{0} \end{aligned}$	b034		Run/power-on warning time	$\begin{array}{\|l\|} \hline \text { 0. to } 9999 .(0 \text { to } 99990), \\ 1000 \text { to } 6553(100000 \text { to } 655300) \text { (hr) } \\ \hline \end{array}$	0.	Not	Allowed
	b035	Rotational direction restriction	00 (enabling both forward and reverse rotations), 01 (enabling only forward rotation), 02 (enabling only reverse rotation)	00	Not	Not	
	b036	Reduced voltage start selection	0 (minimum reduced voltage start time) to 255 (maximum reduced voltage start time)	6	Not	Allowed	
	b037	Function code display restriction	00 (full display), 01 (function-specific display), 02 (user setting), 03 (data comparison display), 04 (basic display)	00	Not	Allowed	
	b038	Initial-screen selection	00 (screen displayed when the STR key was pressed last), 001~060 (d001~d060), 201 (F001) 202 *)	001	Not	Allowed	
	b039	Automatic user-parameter setting function enable	00 (disabling), 01 (enabling)	00	Not	Allowed	
	b040	Torque limit selection	00 (quadrant-specific setting), 01 (switching by terminal), 02 (analog input), 03 (option 1), 04 (option 2)	00	Not	Allowed	
	b041	Torque limit (1) (forward-driving in 4-quadrant mode)	0. to 200. (\%), no (disabling torque limitation) <0. to 150 . (\%), no (disabling torque limitation)> (In case of CT) 0 . to 150 . (\%), no (disabling torque limitation)(In case of VT)	$\begin{aligned} & 150 .(\mathrm{CT}) \\ & 120 .(\mathrm{VT}) \end{aligned}$	Not	Allowed	
	b042	Torque limit (2) (reverse-regenerating in 4-quadrant mode)		$\begin{aligned} & 150 .(\mathrm{CT}) \\ & 120 .(\mathrm{VT}) \\ & \hline \end{aligned}$	Not	Allowed	
	b043	Torque limit (3) (reverse-driving in 4-quadrant mode)		$\begin{aligned} & 150 .(\mathrm{CT}) \\ & 120 .(\mathrm{VT}) \end{aligned}$	Not	Allowed	
	b044	Torque limit (4) (forward-regenerating in 4-quadrant mode)		$\begin{aligned} & \hline 150 .(\mathrm{CT}) \\ & 120 .(\mathrm{VT}) \end{aligned}$	Not	Allowed	
	b045	Torque limit LADSTOP enable	00 (disabling), 01 (enabling)	00	Not	Allowed	
	b046	Reverse Run protection enable	00 (disabling), 01 (enabling)	00	Not	Allowed	
\%	b049	Dual rating selection	00 (CT : Constant torque) 01 (VT : Variable torque)	$\begin{aligned} & 00(\mathrm{CT}) \\ & 01(\mathrm{VT}) \end{aligned}$	Not	Not	
	b050	Controller deceleration and stop on power loss	00 (disabling), 01 (nonstop deceleration to stop), 02 (DC voltage constant control, with resume), 03 (DC voltage constant control, without resume)	00	Not	Not	
	b051	DC bus voltage trigger level during power loss	0.0 to $999.9,1000 .(\mathrm{V})$	220.0/440.0	Not	Not	
	b052	Over-voltage threshold during power loss	0.0 to $999.9,1000 .(\mathrm{V})$	360.0/720.0	Not	Not	
	b053	Deceleration time setting during power loss	0.01 to $99.99,100.0$ to $999.9,1000$. to 3600 . (s)	1.00	Not	Not	
	b054	Initial output frequency decrease during power loss	0.00 to $10.00(\mathrm{~Hz})$	0.00	Not	Not	
	b055	Proportional gain setting for nonstop operation at power loss	0.00 to 2.55	0.20	Allowed	Allowed	
	b056	Integral time setting for nonstop operation at power loss	0.000 to $9.999 / 10.00$ to 65.53 (s)	0.100	Allowed	Allowed	
Window comparator	b060	Maximum-limit level of window comparators O	0. to 100. (lower limit : b061 + b062 x 2) (\%)	100	Allowed	Allowed	
	b061	Minimum-limit level of window comparators O	0. to 100. (upper limit : b060-b062 x 2) (\%)	0	Allowed	Allowed	
	b062	Hysteresis width of window comparators O	0. to 10. (upper limit : b060-b061 / 2) (\%)	0	Allowed	Allowed	
	b063	Maximum-limit level of window comparators OI	0. to 100. (lower limit : b064 + b065 x 2) (\%)	100	Allowed	Allowed	
	b064	Minimum-limit level of window comparators OI	0. to 100. (upper limit : b063-b064 x 2) (\%)	0	Allowed	Allowed	
	b065	Hysteresis width of window comparators OI	0. to 10. (upper limit : b063-b064 / 2) (\%)	0	Allowed	Allowed	
	b066	Maximum-limit level of window comparators OI	-100. to 100. (lower limit : b067 + b068 x 2) (\%)	100	Allowed	Allowed	
	b067	Minimum-limit level of window comparators $\mathrm{O} / \mathrm{OI} / \mathrm{O} 2$	-100. to 100. (upper limit : b066-b068 x 2) (\%)	-100	Allowed	Allowed	
	b068	Hysteresis width of window comparators O/OI/O2	0. to 10. (upper limit : b066-b067 / 2) (\%)	0	Allowed	Allowed	
	b070	Operation level at O disconnection	0. to 100. (\%) or "no" (ignore)	no	Not	Allowed	
	b071	Operation level at OI disconnection	0. to 100. (\%) or "no" (ignore)	no	Not	Allowed	
	b072	Operation level at O2 disconnection	-100. to 100. (\%) or "no" (ignore)	no	Not	Allowed	

(Note) < > indicate the setting range of 75 to 150 kW
(Note) CT : Constant torque mode, VT : variable torque mode, you can set CT or VT by b049.
*) In case of connecting OPE-S to the inverter, '201' setting is same as '00' setting. Refer to the SJ700D-3 instruction manual.

Code		Function name	Monitored data or setting	Default	Change during RUN operation		
		FF ${ }^{\text {FEF }}$ FEUF		b031 1 10	b031=10		
	b078		Cumulative input power data clearance	Clearance by setting "01" and pressing the STR key	00	Allowed	Allowed
	b079	Cumulative input power display gain setting	1. to 1000.	1.	Allowed	Allowed	
	b082	Start frequency adjustment	0.10 to 9.99 (Hz)	0.50	Not	Allowed	
	b083	Carrier frequency setting	$\begin{aligned} & 0.5 \sim 15.0(\mathrm{kHz})<0.5 \sim 10.0(\mathrm{kHz})>(\text { In case of CT) } \\ & 0.5 \sim 12.0(\mathrm{kHz})(\text { In case of VT) } \end{aligned}$	$\begin{gathered} 5.0<3.0>(\mathrm{CT}) \\ 3.0(\mathrm{VT}) \end{gathered}$	Not	Not	
	b084	Initialization mode (parameters or trip history)	00 (disabled), 01 (clearing the trip history), 02 (initializing the data), 03 (clearing the trip history and initializing the data), 04 (clearing the trip history and initializing the data and EzSQ program)	00	Not	Not	
	b085	Country for initialization	00 (JPN), 01(EU), 02(USA)	00 00102	Not	Not	
	b086	Frequency scaling conversion factor	0.1 to 99.0	1.0	Allowed	Allowed	
	b087	STOP key enable	00 (enabling), 01 (disabling), 02 (disabling only the function to stop)	00	Not	Allowed	
	b088	Restart mode after FRS	00 (starting with 0 Hz), 01 (starting with matching frequency), 02 (starting with active matching frequency)	00	Not	Allowed	
	b089	Automatic carrier frequency reduction	00: invalid, 01: valid	00	Not	\times	
	b090	Dynamic braking usage ratio	0.0 to 100.0 (\%)	0.0	Not	Allowed	
	b091	Stop mode selection	00 (deceleration until stop), 01 (free-run stop)	00	Not	Allowed	
	b092	Cooling fan control	00 (always operating the fan), 01 (operating the fan only during inverter operation [including 5 minutes after power-on and power-off])	01	Not	Allowed	
	b095	Dynamic braking control	00 (disabling), 01 (enabling [disabling while the motor is topped]), 02 (enabling [enabling also while the motor is topped])	01	Not	Allowed	
	b096	Dynamic braking activation level	330 to 390 (V) (200 V class model), 660 to $780(\mathrm{~V})(400 \mathrm{~V}$ class model)	360/720	Not	Allowed	
	b098	Thermistor for thermal protection control	00 (disabling the thermistor), 01 (enabling the thermistor with PTC), 02 (enabling the thermistor with NTC)	00	Not	Allowed	
	b099	Thermal protection level setting	0. to $9999 .(\Omega)$	3000.	Not	Allowed	
	b100	Free-setting V/f frequency (1)	0. to "free-setting V/f frequency (2)" (Hz)	0.	Not	Not	
	b101	Free-setting V/f voltage (1)	0.0 to 800.0 (V)	0.0	Not	Not	
	b102	Free-setting V/f frequency (2)	"free-setting V/f frequency (1)" to "free-setting V/f frequency (3)" (Hz)	0.	Not	Not	
	b103	Free-setting V/f voltage (2)	0.0 to 800.0 (V)	0.0	Not	Not	
	b104	Free-setting V/f frequency (3)	"free-setting V/f frequency (2)" to "free-setting V/f frequency (4)" (Hz)	0.	Not	Not	
	b105	Free-setting V/f voltage (3)	0.0 to 800.0 (V)	0.0	Not	Not	
	b106	Free-setting V/f frequency (4)	"free-setting V/f frequency (3)" to "free-setting V/f frequency (5)" (Hz)	0.	Not	Not	
	b107	Free-setting V/f voltage (4)	0.0 to 800.0 (V)	0.0	Not	Not	
	b108	Free-setting V/f frequency (5)	"free-setting V/f frequency (4)" to "free-setting V/f frequency (6)" (Hz)	0.	Not	Not	
	b109	Free-setting V/f voltage (5)	0.0 to 800.0 (V)	0.0	Not	Not	
	b110	Free-setting V/f frequency (6)	"free-setting V/f frequency (5)" to "free-setting V/f frequency (7)" (Hz)	0.	Not	Not	
	b111	Free-setting V/f voltage (6)	0.0 to 800.0 (V)	0.0	Not	Not	
	b112	Free-setting V/f frequency (7)	"free-setting V/f frequency (6)" (Hz) to 400. (Hz)	0.	Not	Not	
	b113	Free-setting V/f voltage (7)	0.0 to 800.0 (V)	0.0	Not	Not	
促	b120	Brake control enable	00 (disabling), 01 (enabling)	00	Not	Allowed	
	b121	Brake wait time for release	0.00 to 5.00 (s)	0.00	Not	Allowed	
	b122	Brake wait time for acceleration		0.00	Not	Allowed	
	b123	Brake wait time for stopping		0.00	Not	Allowed	
	b124	Brake wait time for confirmation		0.00	Not	Allowed	
	b125	Brake release frequency setting	0.00 to 99.99, 100.0 to 400.0 (Hz)	0.00	Not	Allowed	
	b126	Brake release current setting	0.00 x "rated current" to 2.00 x "rated current" (A)	Rated current	Not	Allowed	
	b127	Braking frequency	0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$	0.00	Not	Allowed	
$\left.\begin{array}{\|l\|} \hline 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	b130	Overvoltage suppression enable	$\begin{array}{\|l\|} \hline 00 \text { (disabling restraint), } 01 \text { (controlled deceleration), } \\ 02 \text { (enabling acceleration with decelerating), } 03 \text { (enabling acceleration) } \\ \hline \end{array}$	00	Not	Allowed	
	b131	Overvoltage suppression level	330 to 390 (V) (200 V class), 660 to 780 (V) (400 V class)	380/760	Not	Allowed	
	b132	Acceleration and deceleration rate at overvoltage suppression	0.10 to 30.00 (s)	1.00	Not	Allowed	
	b133	Overvoltage suppression proportional gain	0.00 to 2.55	0.50	Allowed	Allowed	
	b134	Overvoltage suppression Integral time	0.000 to 9.999 / 10.00 to 65.53 (s)	0.060	Allowed	Allowed	
-	b141	Output loss detection enable	00 (disabling), 01 (enabling)	00	Not	Allowed	
	b142	Output loss detection sensibility	1.~100.(\%)	10.	Allowed	Allowed	
	b164	Automatic return to initial display	00 (disabling), 01 (enabling)	00	Allowed	Allowed	
	b166	Data Read/Write select	00 (Read/Write OK), 01 (Protected)	00	Not	Allowed	
	b180	Initialization trigger	00 (Initialization disable), 01 (Perform initialization)	00	Not	Not	

(Note) < >indicate the setting range of 75 to 150 kW
(Note) CT : Constant torque mode, VT : variable torque mode, you can set CT or VT by b049.

Chapter 4 List of Data Settings

(*) When the emergency stop function is enabled (SW1 = ON), "18" (RS) and "64" (EMR) are forcibly written to parameters "C001" and "C003", respectively. (You cannot arbitrarily write " 64 " to "C001".) If the SW1 signal is turned off and then turned on, "no" (no assignment) is set in parameter "C003".

Chapter 4 List of Data Settings

Code		Function name	Monitored data or setting	Default	Change during RUN operation		
		FF FEF FUF		b031 1 10	b031=10		
	C038		Low-current indication signal output mode selection	00 (output during acceleration/deceleration and constant-speed operation), 01 (output only during constant-speed operation)	01	Not	Allowed
	C039	Low-current indication signal detection level	$\begin{aligned} & 0.00 \text { to } 2.00 \times \text { "rated current" (A) } \\ & <0.00 \text { to } 1.80 \times \text { "rated current" }(\mathrm{A})>(\text { In case of CT) } \\ & 0.00 \text { to } 1.50 \times \text { "rated current" }(\mathrm{A})(\text { In case of VT) } \\ & \hline \end{aligned}$	Rated current	Allowed	Allowed	
	C040	Overload signal output mode	00 (output during acceleration/deceleration and constant-speed operation), 01 (output only during constant-speed operation)	01	Not	Allowed	
	C041	Overload level setting	0.00 to 2.00 x "rated current" (A) <0.00 to 1.80 x "rated current" $(\mathrm{A})>$ (In case of CT) 0.00 to 1.50 x "rated current" (A) (In case of VT)	Rated current	Allowed	Allowed	
	C042	Frequency arrival setting for accel.	0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$	0.00	Not	Allowed	
	C043	Frequency arrival setting for decel.	0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$	0.00	Not	Allowed	
	C044	PID deviation level setting	0.0 to 100.0 (\%)	3.0	Not	Allowed	
	C045	Frequency arrival setting for acceleration (2)	0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$	0.00	Not	Allowed	
	C046	Frequency arrival setting for deceleration (2)	0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$	0.00	Not	Allowed	
	C052	Maximum PID feedback data	0.0 to 100.0 (\%)	100.0	Not	Allowed	
	C053	Minimum PID feedback data	0.0 to 100.0 (\%)	0.0	Not	Allowed	
	C055	Over-torque (forward-driving) level setting	0. to 200. (\%), no (disabling torque limitation) <0. to 150 . (\%), no (disabling torque limitation)> (In case of CT) 0 . to 150 . (\%), no (disabling torque limitation)(In case of VT)	100.	Not	Allowed	
	C056	Over-torque (reverse regenerating) level setting		100.	Not	Allowed	
	C057	Over-torque (reverse driving) level setting		100.	Not	Allowed	
	C058	Over-torque (forward regenerating) level setting		100.	Not	Allowed	
	C061	Electronic thermal warning level setting	0. to 100. (\%)	80.	Not	Allowed	
	C062	Alarm code output	00 (disabling), 01 (3 bits), 02 (4 bits)	00	Not	Allowed	
	C063	Zero speed detection level	0.00 to $99.99,100.0$ (Hz)	0.00	Not	Allowed	
	C064	Heat sink overheat warning level	0. to $200.0\left({ }^{\circ} \mathrm{C}\right)$	120.	Not	Allowed	
	C071	Communication speed selection	$\begin{aligned} & 02 \text { (loopback test), 03(2400bps), 04(4800bps), } \\ & 05(9600 \mathrm{bps}), 06(19.2 \mathrm{kbps}), 07(38.4 \mathrm{kbps}), \\ & 08(57.6 \mathrm{kbps}), 09(76.8 \mathrm{kbps}), 10(115.2 \mathrm{kbps}) \\ & \hline \end{aligned}$	04	Not	Allowed	
	C072	Node allocation	1. to 32.	1.	Not	Allowed	
	C073	Communication data length selection	7 (7 bits), 8 (8 bits)	7	Not	Allowed	
	C074	Communication parity selection	00 (no parity), 01 (even parity), 02 (odd parity)	00	Not	Allowed	
	C075	Communication stop bit selection	1 (1 bit), 2 (2 bits)	1	Not	Allowed	
	C076	Selection of the operation after communication error	00 (tripping), 01 (tripping after decelerating and stopping the motor), 02 (ignoring errors), 03 (stopping the motor after free-running), 04 (decelerating and stopping the motor)	02	Not	Allowed	
	C077	Communication timeout limit before tripping	0.00 to 99.99 (s)	0.00	Not	Allowed	
	C078	Communication wait time	0. to 1000. (ms)	0.	Not	Allowed	
	C079	Communication mode selection	00(ASCII), 01(Modbus-RTU)	00	Not	Allowed	
	C081	[O] input span calibration	0. to 9999., 1000 to 6553(10000 to 65530)	Factory setting	Allowed	Allowed	
	C082	[OI] input span calibration		Factory setting	Allowed	Allowed	
	C083	[O2] input span calibration		Factory setting	Allowed	Allowed	
	C085	Thermistor input tuning	0.0 to 999.9, 1000.	Factory setting	Allowed	Allowed	
	C091	Debug mode enable	(Do not change this parameter, which is intended for factory adjustment.)	00	Not	Not	
$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \end{aligned}$	C101	Up/Down memory mode selection	00 (not storing the frequency data), 01 (storing the frequency data)	00	Not	Allowed	
	C102	Reset mode selection	00 (resetting the trip when RS is on), 01 (resetting the trip when RS is off), 02 (enabling resetting only upon tripping [resetting when RS is on]), 03(resetting only trip)	00	Allowed	Allowed	
	C103	Restart mode after reset	00 (starting with 0 Hz), 01 (starting with matching frequency), 02 (restarting with active matching frequency)	00	Not	Allowed	
	C105	FM gain adjustment	50. to 200. (\%)	100.	Allowed	Allowed	
	C106	AM gain adjustment		100.	Allowed	Allowed	
	C107	AMI gain adjustment		100.	Allowed	Allowed	
	C109	AM bias adjustment	0. to 100. (\%)	0.	Allowed	Allowed	
	C110	AMI bias adjustment		20.	Allowed	Allowed	

[^3]| Code | | Function name | Monitored data or setting | Default | | | Change during RUN operation | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | FF | | FEF | FUF | b031 $=10$ | b031=10 |
| 砢 | C111 | | Overload setting (2) | 0.20 to 2.00 x "rated current" (A)
 <0.20 to 1.80 x "rated current" (A) > (In case of CT)
 0.20 to 1.50 x "rated current" (A) (In case of VT) | Rated current | | | Allowed | Allowed |
| | C121 | [O] input zero calibration | 0. to 9999., 1000 to 6553 (10000 to 65530) | Factory setting | | | Allowed | Allowed |
| | C122 | [OI] input zero calibration | | | ry se | | Allowed | Allowed |
| | C123 | [O2] input zero calibration | | | ry set | | Allowed | Allowed |
| | C130 | Output 11 on-delay time | 0.0 to 100.0 (s) | | 0.0 | | Not | Allowed |
| | C131 | Output 11 off-delay time | | | 0.0 | | Not | Allowed |
| | C132 | Output 12 on-delay time | 0.0 to 100.0 (s) | | 0.0 | | Not | Allowed |
| | C133 | Output 12 off-delay time | | | 0.0 | | Not | Allowed |
| | C134 | Output 13 on-delay time | 0.0 to 100.0 (s) | | 0.0 | | Not | Allowed |
| | C135 | Output 13 off-delay time | | | 0.0 | | Not | Allowed |
| | C136 | Output 14 on-delay time | 0.0 to 100.0 (s) | | 0.0 | | Not | Allowed |
| | C137 | Output 14 off-delay time | | | 0.0 | | Not | Allowed |
| | C138 | Output 15 on-delay time | 0.0 to 100.0 (s) | | 0.0 | | Not | Allowed |
| | C139 | Output 15 off-delay time | | | 0.0 | | Not | Allowed |
| | C140 | Output RY on-delay time | 0.0 to 100.0 (s) | | 0.0 | | Not | Allowed |
| | C141 | Output RY off-delay time | | | 0.0 | | Not | Allowed |
| | C142 | Logical output signal 1 selection 1 | Same as the settings of C021 to C026 (except those of LOG1 to LOG6) | | 00 | | Not | Allowed |
| | C143 | Logical output signal 1 selection 2 | | | 00 | | Not | Allowed |
| | C144 | Logical output signal 1 operator selection | 00 (AND), 01 (OR), 02 (XOR) | | 00 | | Not | Allowed |
| | C145 | Logical output signal 2 selection 1 | Same as the settings of C021 to C026 (except those of LOG1 to LOG6) | | 00 | | Not | Allowed |
| | C146 | Logical output signal 2 selection 2 | | | 00 | | Not | Allowed |
| | C147 | Logical output signal 2 operator selection | 00 (AND), 01 (OR), 02 (XOR) | | 00 | | Not | Allowed |
| | C148 | Logical output signal 3 selection 1 | Same as the settings of C021 to C026 (except those of LOG1 to LOG6) | | 00 | | Not | Allowed |
| | C149 | Logical output signal 3 selection 2 | | | 00 | | Not | Allowed |
| | C150 | Logical output signal 3 operator selection | 00 (AND), 01 (OR), 02 (XOR) | | 00 | | Not | Allowed |
| | C151 | Logical output signal 4 selection 1 | Same as the settings of C021 to C026 (except those of LOG1 to LOG6) | | 00 | | Not | Allowed |
| | C152 | Logical output signal 4 selection 2 | | | 00 | | Not | Allowed |
| | C153 | Logical output signal 4 operator selection | 00 (AND), 01 (OR), 02 (XOR) | | 00 | | Not | Allowed |
| | C154 | Logical output signal 5 selection 1 | Same as the settings of C021 to C026 (except those of LOG1 to LOG6) | | 00 | | Not | Allowed |
| | C155 | Logical output signal 5 selection 2 | | | 00 | | Not | Allowed |
| | C156 | Logical output signal 5 operator selection | 00 (AND), 01 (OR), 02 (XOR) | | 00 | | Not | Allowed |
| | C157 | Logical output signal 6 selection 1 | Same as the settings of C021 to C026 (except those of LOG1 to LOG6) | | 00 | | Not | Allowed |
| | C158 | Logical output signal 6 selection 2 | | | 00 | | Not | Allowed |
| | C159 | Logical output signal 6 operator selection | 00 (AND), 01 (OR), 02 (XOR) | | 00 | | Not | Allowed |
| | C160 | Input terminal response time setting 1 | 0. to 200. ($\times 2 \mathrm{~ms}$) | | 1 | | Not | Allowed |
| | C161 | Input terminal response time setting 2 | 0. to 200. ($\times 2 \mathrm{~ms}$) | | 1 | | Not | Allowed |
| | C162 | Input terminal response time setting 3 | 0. to 200. ($\times 2 \mathrm{~ms}$) | | 1 | | Not | Allowed |
| | C163 | Input terminal response time setting 4 | 0. to 200. ($\times 2 \mathrm{~ms}$) | | 1 | | Not | Allowed |
| | C164 | Input terminal response time setting 5 | 0. to 200. ($\times 2 \mathrm{~ms}$) | | 1 | | Not | Allowed |
| | C165 | Input terminal response time setting 6 | 0. to 200. ($\times 2 \mathrm{~ms}$) | | 1 | | Not | Allowed |
| | C166 | Input terminal response time setting 7 | 0. to 200. ($\times 2 \mathrm{~ms}$) | | 1 | | Not | Allowed |
| | C167 | Input terminal response time setting 8 | 0. to 200. ($\times 2 \mathrm{~ms}$) | | 1 | | Not | Allowed |
| | C168 | Input terminal response time setting FW | 0. to 200. ($\times 2 \mathrm{~ms}$) | | 1 | | Not | Allowed |
| 馬 | C169 | Multistage speed/position determination time | 0. to 200. ($\times 10 \mathrm{~ms}$) | | 0 | | Not | Allowed |

(Note) < >indicate the setting range of 75 to 150 kW

Chapter 4 List of Data Settings

Code		Function name	Monitored data or setting	Default	Change during RUN operation		
		FF ${ }^{\text {F }}$ FEF ${ }^{\text {FUF }}$		b031 1 10	b031=10		
	H001		Auto-tuning Setting	00 (disabling auto-tuning), 01 (auto-tuning without rotation), 02 (auto-tuning with rotation)	00	Not	Not
	H002	Motor data selection, 1st motor	00 (Hitachi standard data), 01 (auto-tuned data), 02 (auto-tuned data [with online auto-tuning function])	00	Not	Not	
	H202	Motor data selection, 2nd motor		00	Not	Not	
	H003	Motor capacity, 1st motor	$0.20 \text { to } 160 .(\mathrm{kW})$	Factory setting	Not	Not	
	H203	Motor capacity, 2nd motor		Factory setting	Not	Not	
	H004	Motor poles setting, 1st motor	2, 4, 6, 8, 10 (poles)	4	Not	Not	
	H204	Motor poles setting, 2nd motor		4	Not	Not	
	H005	Motor speed constant, 1st motor	0.001 to $9.999,10.00$ to 80.00 (10.000 to 80.000)	1.590	Allowed	Allowed	
	H205	Motor speed constant, 2nd motor		1.590	Allowed	Allowed	
	H006	Motor stabilization constant, 1st motor	0. to 255.	100.	Allowed	Allowed	
	H206	Motor stabilization constant, 2nd motor		100.	Allowed	Allowed	
	H306	Motor stabilization constant, 3rd motor		100.	Allowed	Allowed	
	H020	Motor constant R1, 1st motor	0.001 to $9.999,10.00$ to 65.53 (Ω)	Factory setting	Not	Not	
	H220	Motor constant R1, 2nd motor		Factory setting	Not	Not	
	H021	Motor constant R2, 1st motor	0.001 to $9.999,10.00$ to 65.53 (Ω)	Factory setting	Not	Not	
	H221	Motor constant R2, 2nd motor		Factory setting	Not	Not	
	H022	Motor constant L, 1st motor	0.01 to $99.99,100.0$ to $655.3(\mathrm{mH})$	Factory setting	Not	Not	
	H222	Motor constant L, 2nd motor		Factory setting	Not	Not	
	H023	Motor constant Io	0.01 to $99.99,100.0$ to 655.3 (A)	Factory setting	Not	Not	
	H223	Motor constant Io, 2nd motor		Factory setting	Not	Not	
	H024	Motor constant J	0.001 to $9.999,10.00$ to $99.99,100.0$ to 999.9 , 1000. to 9999.	Factory setting	Not	Not	
	H224	Motor constant J, 2nd motor		Factory setting	Not	Not	
	H030	Auto constant R1, 1st motor	0.001 to $9.999,10.00$ to 65.53 (Ω)	Factory setting	Not	Not	
	H230	Auto constant R1, 2nd motor		Factory setting	Not	Not	
	H031	Auto constant R2, 1st motor	0.001 to $9.999,10.00$ to 65.53 (Ω)	Factory setting	Not	Not	
	H231	Auto constant R2, 2nd motor		Factory setting	Not	Not	
	H032	Auto constant L, 1st motor	0.01 to $99.99,100.0$ to $655.3(\mathrm{mH})$	Factory setting	Not	Not	
	H232	Auto constant L, 2nd motor		Factory setting	Not	Not	
	H033	Auto constant Io, 1st motor	0.01 to $99.99,100.0$ to 655.3 (A)	Factory setting	Not	Not	
	H233	Auto constant Io, 2nd motor		Factory setting	Not	Not	
	H034	Auto constant J, 1st motor	0.001 to $9.999,10.00$ to $99.99,100.0$ to 999.9 , 1000. to 9999 .	Factory setting	Not	Not	
	H234	Auto constant J, 2nd motor		Factory setting	Not	Not	
	H050	PI proportional gain for 1st motor	0.0 to 999.9, 1000.	100.0	Allowed	Allowed	
	H250	PI proportional gain for 2nd motor		100.0	Allowed	Allowed	
	H051	PI integral gain for 1st motor	0.0 to 999.9, 1000.	100.0	Allowed	Allowed	
	H251	PI integral gain for 2nd motor		100.0	Allowed	Allowed	
	H052	P proportional gain setting for 1st motor	0.01 to 10.00	1.00	Allowed	Allowed	
	H252	P proportional gain setting for 2nd motor		1.00	Allowed	Allowed	
	H060	Zero level limit for 1st motor	0.0 to 100.0	100.0	Allowed	Allowed	
	H260	Zero level limit for 2nd motor		100.0	Allowed	Allowed	
	H061	Zero level starting boost current for 1st motor	0. to 50. (\%)	50.	Allowed	Allowed	
	H261	Zero level starting boost current for 2nd motor		50.	Allowed	Allowed	
	H070	Terminal selection PI proportional gain setting	0.0 to 999.9, 1000.	100.0	Allowed	Allowed	
	H071	Terminal selection PI integral gain setting		100.0	Allowed	Allowed	
	H072	Terminal selection P proportional gain setting	0.00 to 10.00	1.00	Allowed	Allowed	
	H073	Gain switching time	0. to 9999. (ms)	100.	Allowed	Allowed	

(Note) < >indicate the setting range of 75 to 150 kW

Chapter 4 List of Data Settings

Code		Function name	Monitored data or setting	Default			Change during RUN operation		
		FF		FEF	FUF	b031 $\ddagger 10$	b031=10		
$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \end{array}$	P055		Pulse-string frequency scale	1.0 to $50.0(\mathrm{kHz})$	25.0			Not	Allowed
	P056	Time constant of pulse-string frequency filter	0.01 to 2.00 (s)	0.10			Not	Allowed	
	P057	Pulse-string frequency bias	-100. to $+100 .(\%)$	0.			Not	Allowed	
	P058	Pulse-string frequency limit	0. to 100. (\%)	100.			Not	Allowed	
	P060	Multistage position setting 0	Position setting range reverse side - forward side (upper 4 digits including "-")	0			Allowed	Allowed	
	P061	Multistage position setting 1	Position setting range reverse side - forward side (upper 4 digits including "-"")	0			Allowed	Allowed	
	P062	Multistage position setting 2	Position setting range reverse side - forward side (upper 4 digits including "-")	0			Allowed	Allowed	
	P063	Multistage position setting 3	Position setting range reverse side - forward side (upper 4 digits including "-")	0			Allowed	Allowed	
	P064	Multistage position setting 4	Position setting range reverse side - forward side (upper 4 digits including "-"")	0			Allowed	Allowed	
	P065	Multistage position setting 5	Position setting range reverse side - forward side (upper 4 digits including "-")	0			Allowed	Allowed	
	P066	Multistage position setting 6	Position setting range reverse side - forward side (upper 4 digits including "-")	0			Allowed	Allowed	
	P067	Multistage position setting 7	Position setting range reverse side - forward side (upper 4 digits including "-"")	0			Allowed	Allowed	
	P068	Zero-return mode selection	00(Low)/01 (Hi1)/00 (Hi2)	00			Allowed	Allowed	
	P069	Zero-return direction selection	00 (FW)/01 (RV)	00			Allowed	Allowed	
	P070	Low-speed zero-return frequency	0.00 to 10.00 (Hz)	0.00			Allowed	Allowed	
	P071	High-speed zero-return frequency	0.00 - 99.99 / 100.0 - Maximum frequency setting, 1st motor (Hz)	0.00			Allowed	Allowed	
	P072	Position range specification (forward)	$\begin{aligned} & 0-268435455(\text { when P012 }=02) \\ & 0-1073741823(\text { When P012 }=03)(\text { upper } 4 \text { digits) } \end{aligned}$	$\begin{gathered} 2684 \\ (268435455) \end{gathered}$			Allowed	Allowed	
	P073	Position range specification (reverse)	$\begin{aligned} & -268435455-0(\text { when P012 }=02) \\ & -1073741823-0(\text { When P012 }=03)(\text { upper } 4 \text { digits) } \end{aligned}$	$\begin{gathered} -268 \\ (-268435455) \end{gathered}$			Allowed	Allowed	
	P074	Teaching selection	00 (X00) / 01 (X01) / 02 (X02) / 03 (X03) /04 (X04) / 05 (X05) / 06 (X06) / 07 (X07)	00			Allowed	Allowed	
	P100	Easy sequence user parameter U (00)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	
	P101	Easy sequence user parameter U (01)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	
	P102	Easy sequence user parameter U (02)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	
	P103	Easy sequence user parameter U (03)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	
	P104	Easy sequence user parameter U (04)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	
	P105	Easy sequence user parameter U (05)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	
	P106	Easy sequence user parameter U (06)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	
	P107	Easy sequence user parameter U (07)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	
	P108	Easy sequence user parameter U (08)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	
	P109	Easy sequence user parameter U (09)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	
	P110	Easy sequence user parameter U (10)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.			Allowed	Allowed	

Chapter 4 List of Data Settings

Code		Function name	Monitored data or setting	Default			Change during RUN operation		
		FF		FEF	FUF	b031 $=10$	b031=10		
	P111		Easy sequence user parameter U (11)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed
	P112	Easy sequence user parameter U (12)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P113	Easy sequence user parameter U (13)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P114	Easy sequence user parameter U (14)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P115	Easy sequence user parameter U (15)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P116	Easy sequence user parameter U (16)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P117	Easy sequence user parameter U (17)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P118	Easy sequence user parameter U (18)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P119	Easy sequence user parameter U (19)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P120	Easy sequence user parameter U (20)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P121	Easy sequence user parameter U (21)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P122	Easy sequence user parameter U (22)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P123	Easy sequence user parameter U (23)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P124	Easy sequence user parameter U (24)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P125	Easy sequence user parameter U (25)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P126	Easy sequence user parameter U (26)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P127	Easy sequence user parameter U (27)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P128	Easy sequence user parameter U (28)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P129	Easy sequence user parameter U (29)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P130	Easy sequence user parameter U (30)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	P131	Easy sequence user parameter U (31)	0. to 9999., 1000 to 6553 (10000 to 65535)		0.		Allowed	Allowed	
	U001	User-selected function 1	no/d001 to P131		no		Allowed	Allowed	
	U002	User-selected function 2	no/d001 to P131		no		Allowed	Allowed	
	U003	User-selected function 3	no/d001 to P131		no		Allowed	Allowed	
	U004	User-selected function 4	no/d001 to P131		no		Allowed	Allowed	
	U005	User-selected function 5	no/d001 to P131		no		Allowed	Allowed	
	U006	User-selected function 6	no/d001 to P131		no		Allowed	Allowed	
	U007	User-selected function 7	no/d001 to P131		no		Allowed	Allowed	
	U008	User-selected function 8	no/d001 to P131		no		Allowed	Allowed	
	U009	User-selected function 9	no/d001 to P131		no		Allowed	Allowed	
	U010	User-selected function 10	no/d001 to P131		no		Allowed	Allowed	
	U011	User-selected function 11	no/d001 to P131		no		Allowed	Allowed	
	U012	User-selected function 12	no/d001 to P131		no		Allowed	Allowed	

(Note) < >indicate the setting range of 75 to 150 kW
(Memo)

Chapter 5 Error Codes

This chapter describes the error and warning codes of the inverter.
5.1 Error Codes and Troubleshooting 5-2
5.2 Warning Codes 5-5

5.1 Error Codes and Troubleshooting

5.1.1 Error Codes

Name	Description		Display on digital operator
Overcurrent protection	If the motor is constrained or suddenly accelerated or decelerated, a high current will flow in the inverter and the inverter may fail. To avoid this problem, the inverter shuts off its output and displays the error code shown on the right when it detects a current higher than a specified level. This protective function uses a DC current detector to detect overcurrent. When a current as high as about 220% of the inverter's rated output current of constant torque mode is detected, the protective circuit operates and the inverter trips.	$\begin{gathered} \text { During } \\ \text { constant- } \\ \text { speed operation } \end{gathered}$	O) :
		During deceleration	E93:
		During acceleration	Ef3:
		Others	
Overload protection $(* 1)$	This protective function monitors the inverter output current, and shuts off the inverter output and displays the error code shown on the right when the internal electronic thermal protection circuit detects a motor overload. If the error occurs, the inverter will trip according to the setting of the electronic thermal function.		95:
Braking resistor overload protection	When the BRD operation rate exceeds the setting of "b090", this protective function shuts off the inverter output and displays the error code shown on the right.		EGE:
Overvoltage protection	If the DC voltage across the P and N terminals rises too high, an inverter failure may result. To avoid this problem, this protective function shuts off the inverter output and displays the error code shown on the right when the DC voltage across the P and N terminals exceeds a specified level because of an increase in the energy regenerated by the motor or the input voltage (during operation). The inverter will trip if the DC voltage across the P and N terminals exceeds about 400 VDC (in case of the 200 V class models) or about 800 VDC (in case of the 400 V class models).		E\%9:
$\begin{aligned} & \text { EEPROM } \\ & \text { error } \\ & (* 2)(* 3) \end{aligned}$	When an internal-EEPROM is caused by external noise or an abnormal temperature rise, the inverter shuts off its output and displays the error code shown on the right. Note: An EEPROM error may result in a CPU error.		EG8:
Under voltage	If the inverter input voltage drops, the control circuit of the inverter cannot function normally. Therefore, the inverter shuts off its output when the input voltage falls below a specified level. The inverter will trip if the DC voltage across the P and N terminals exceeds about 175 VDC (in case of the 200 V class models) or about 345 VDC (in case of the 400 V class models).		ESG

Name	\quad Description

*1 The inverter will not accept any reset command within about 10 seconds after tripping (i.e., after the protective function operates).
*2 The inverter will not accept any reset command after an EEPROM error occurs with error code EGB displayed. Turn off the inverter power once. If error code "E08" is displayed when the inverter power is turned on subsequently, the internal memory device may have failed or parameters may have not been stored correctly. In such cases, initialize the inverter, and then re-set the parameters.
*3 The inverter will not accept reset commands input via the RS terminal or entered by the STOP/RESET key. Therefore, turn off the inverter power.

Name	Description	Display on digital operator
Gate array communica- tion error	If an error occurs in the communication between the internal CPU and gate array, the inverter will trip.	When the phase loss input protection has been enabled (b006 o o1), the inverter will Phase loss input protection to avoid damage if an phase loss input is detected. The inverter trips when the phase loss input continues for about 1 second or more.

Name	Description	Display on digital operator
User Trip	The inverter detects errors in the easy sequence. Refer to SJ700D-3 instruction manual.	
Option 1 error	The inverter detects errors in the option board mounted in the optional slot 1. For details, refer to the instruction manual for the mounted option board.	
Option 2 error	The inverter detects errors in the option board mounted in the optional slot 1 . For details, refer to the instruction manual for the mounted option board.	$\begin{aligned} & \frac{E 90.1}{\text { to }} \\ & E 99 . \end{aligned}$
Waiting in under voltage status	If the input voltage falls, the inverter will shut off its output, display the code shown on the right, and wait for the recovery of the input voltage. The inverter will display the same error code also during an instantaneous power failure. (remark) Inverter trips with under voltage when this status continues for 40 seconds.	- -
Communication error	If a problem occurs in the communication between the digital operator and inverter, the inverter will display the code shown on the right. For example disconnection.	$\cdots \cdots$
Waiting for retry	When the retry after instantaneous power failure or tripping has been enabled, the inverter displays the code shown on the right while awaiting retry after an instantaneous power failure or tripping.	0000
Power-off	The inverter displays the code shown on the right when the inverter power is turned off.	\cdots
Restricted operation command	When an operation direction has been restricted by the setting of "b035", the inverter will display the error code shown on the right if the operation command specifying the restricted operation direction is input.	0000
Empty trip history	If the inverter has not tripped before, the inverter displays \square	----

*4 The inverter will not accept reset commands input via the RS terminal or entered by the STOP/RESET key. Therefore, turn off the inverter power.
*5 The inverter will not accept the reset command entered from the digital operator. Therefore, reset the inverter by turning on the RS terminal.

Chapter 5 Error Codes

5.1.2 Trip conditions monitoring

5) Accumulated time (h) for which the inverter has been running before tripping

6) Accumulated time for which the inverter power has been on before tripping

0
: Resetting/Initialization at power-on or with the reset terminal turned on
: Stopping the motor

E.Decelerating or operating the motor

During constant speed
© Accelerating the motor
: Status after receiving a zero-frequency operation command
6
Starting the motor
: Applying DC braking to the motor
I : Overload-restricted operation
9
Forcible or servo-on operation
Note: The above descriptions indicate the inverter status at the occurrence of tripping, which may not correspond to the apparent operation of the motor.
(Example)
When the PID control is used or the frequency command is input as an analog signal (a voltage or current signal), the inverter may repeat acceleration and deceleration alternately at short intervals to make up for the fluctuations of the analog signal, even if the motor is apparently running at constant speed. In such cases, the inverter status at tripping may not correspond to the apparent operation of the motor.

5.2 Warning Codes

The following table lists the warning codes and the contents of parameter readjustments:

Warning code	Target function code	Condition	Basic function code
	Frequency upper limit setting (A061/A261)	$>$	Maximum frequency setting(A004/A204/A304)
-1002	Frequency lower limit setting (A062/A262)	$>$	
-1005/-1205/-1305	Output frequency setting (F001) ${ }^{*}$)	>	
-10155-1215	Output frequency setting (F001) ${ }^{*}$)	>	Frequency upper limit setting(A061/A261)
-1019	Home search speed setting (P015)	>	
-1025 /-1225	Output frequency setting (F001) ${ }^{*}$)	<	Frequency lower limit setting (A062/A262)
-1029	Home search speed setting (P015)	<	
-1031近1231	Frequency upper limit setting (A061/A261)	$<$	Start frequency adjustment (b082)
-1032/i-1232	Frequency lower limit setting (A062/A262)	$<$	
-1035/-12351-2	Output frequency setting (F001) ${ }^{*}$)	<	
!-1037	Jog frequency setting (A038)	$<$	
	Output frequency setting (F001) (*)	<>	$\begin{aligned} & \text { Jump (center) frequency settings } \\ & 1 / 2 / 3 \pm \text { " Jump (hysteresis) frequency } \\ & \text { width settings } 1 / 2 / 3 \text { " } \\ & \text { A063 } \pm \text { A064, A065 } \pm \text { A066, } \\ & \text { A067 } \pm \text { A068 } \end{aligned}$
I-1086	Multispeed 1 to 15 settings (A021 to A035)	<>	
-1091/-1291	Frequency upper limit setting (A061/A261)	$>$	Free-setting V/f frequency (7) (b112)
-1092/-i292	Frequency lower limit setting (A062/A262)	$>$	
I_1095/-1295	Output frequency setting (F001) (*)	$>$	

- The inverter displays a warning code when the data set as a target function code satisfies the condition (specified in the Condition column) in relation to the data set as the corresponding basic function code.
- When the inverter is warning, it can not run to work the motor. Refer to the above column and modify the patramerters to the correct data.
- When the inverter is warning, you can confirm the warning information 'd090'.
* These parameters are checked, even when the digital operator (02) is not specified for the frequency source setting (A001).
(Memo)

Chapter 6 Specifications

This chapter describes the specifications and external dimensions of the inverter.
6.1 Specifications 6-2
6.2 External dimensions 6-5

Chapter 6 Specifications

6.1 Specifications (CT : Constant torque mode, VT : Variable torque mode)
(1) Specifications of the 200 V class model

Model name (type name) SJ700D-***LFF3/FUF3			004	007	015	022	037	055	075	110	150	185	220	300	370	450	550
Max. applicable motor capacity (4-pole) (kW)		CT	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
		VT	0.75	1.1	2.2	3.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75
Rated capacity (kVA)	200 V	CT	1.0	1.7	2.5	3.6	5.7	8.3	11.0	15.9	22.1	26.3	32.9	41.9	50.2	63.0	76.2
		VT	1.2	2.1	3.2	4.1	6.7	10.3	15.2	20.0	25.2	29.4	39.1	48.4	58.5	72.7	93.5
	240 V	CT	1.2	2.0	3.1	4.3	6.8	9.9	13.3	19.1	26.6	31.5	39.4	50.2	60.2	75.6	91.4
		VT	1.5	2.6	3.9	4.9	8.1	12.4	18.2	24.1	30.3	35.3	46.9	58.1	70.2	87.2	112.2

Rated input AC voltage
Rated output voltage

Three-phase (3-wire), 200 to $240 \mathrm{~V}(+10 \%,-15 \%), 50 / 60 \mathrm{~Hz}(\pm 5 \%)$

$\stackrel{60}{\square}$	Regenerative braking	Internal BRD circuit (external discharge resistor)											External regenerative braking unit			
	Minimum connectable resistance (Ω)	50	50	35	35	35	16	10	10	7.5	7.5	5				
	Approx. weight (kg)	3.5	3.5	3.5	3.5	3.5	6	6	6	14	14	14	22	30	30	

(2) Specifications of the 400 V class model

$\begin{gathered} \text { Model name (type name) } \\ \text { SJ700D-****FF3/FEF3/FUF3 } \end{gathered}$				007	015	022	$\begin{aligned} & 037 \\ & 040 \\ & \hline \end{aligned}$	055	075	110	150	185	220	300	370	450	550	750	900	1100	$\begin{array}{\|l\|} \hline 1320 \\ 1500 \\ \hline \end{array}$
Max. applicable motor capacity (4-pole) (kW)			CT	0.75	1.5	2.2	$\begin{aligned} & 3.71 \\ & 4.0 \\ & \hline \end{aligned}$	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	$\begin{array}{\|c} \hline 132 / \\ 150 \\ \hline \end{array}$
			VT	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160
Rated capacity (kVA)		400 V	CT	1.7	2.6	3.6	6.2	9.7	13.1	17.3	22.1	26.3	33.2	40.1	51.9	62.3	76.2	103.2	121.9	150.3	180.1
		VT	2.1	3.3	4.6	7.6	11.0	15.2	20.0	25.6	29.7	39.4	48.4	58.8	72.7	93.5	110.8	135	159.3	200.9	
		480 V	CT	2.0	3.1	4.3	7.4	11.6	15.8	20.7	26.6	31.5	39.9	48.2	62.3	74.8	91.4	123.8	146.3	180.4	216.1
		VT	2.5	3.9	5.5	9.2	13.3	18.2	24.1	30.7	35.7	47.3	58.1	70.6	87.2	112.2	133	162.1	191.2	241.1	
Rated input AC voltage				Three-phase (3-wire), 380 to $480 \mathrm{~V}(+10 \%,-15 \%), 50 / 60 \mathrm{~Hz}(\pm 5 \%)$																	
Rated output voltage				Three-phase (3-wire), 380 to 480 V (corresponding to the input voltage)																	
Rated output current (A)			CT	2.5	3.8	5.3	9.0	14	19	25	32	38	48	58	75	91	112	149	176	217	260
			VT	3.1	4.8	6.7	11.1	16	22	29	37	43	57	70	85	105	135	160	195	230	290
	Regenerative braking			Internal BRD circuit (external discharge resistor)										External regenerative braking unit							
	Minimum connectable resistance (Ω)			100	100	100	70	70	35	35	24	24	20	-							
Approx. weight (kg)				3.5	3.5	3.5	3.5	6	6	6	14	14	14	22	30	30	30	55	55	70	70

(3) Common specifications of 200 V class and 400 V class models

Model n SJ700D-**	e (type name) FF3/FEF3/FUF3	004 L	007 L/H	015	L/H	037 040 L/H	055 L/H	075	110	150	185	220	300 L/H	370	450	550	750	900 H	1100 H	$\begin{gathered} 1320 \\ 1500 \\ \mathrm{H} \end{gathered}$
Protective structure		IP20															IP00			
Control system		Sine-wave PWM control																		
Output frequency range		0.1 to 400 Hz (Note 3)																		
Frequency accuracy		Within $\pm 0.01 \%$ of the maximum output frequency for digital input, within $\pm 0.2 \%$ of maximum frequency for digital input (at $25 \pm 10^{\circ} \mathrm{C}$)																		
Frequency setting resolution		Digital input: 0.01 Hz Analog input: Maximum output frequency/4000 (O terminal input: 12 bits/ 0 to $+10 \mathrm{~V}, \mathrm{O} 2$ terminal input: 12 bits/- -10 to +10 V , OI terminal input: 12 bits $/ 0$ to +20 mA)																		
Voltage/frequency characteristic		IM : V/f characteristic variable with the base frequency set between 30 to 400 Hz , constant- or reduced-torque V/f control, SLV : sensorless vector control, $0 \mathrm{~Hz}-\mathrm{SLV}: 0 \mathrm{~Hz}$ ranged sensorless vector control (only CT), vector with sensor (only CT)																		
Spee	luctuation	$\pm 0.5 \%$ (with sensorless vector control) Note8)																		
Rated overload current		CT : $150 \% / 60 \mathrm{sec}, 200 \% / 3 \mathrm{sec}$ VT : $120 \% / 60 \mathrm{sec}, 150 \% / 5 \mathrm{sec}$															CT $: 150 \% / 60 \mathrm{sec}$,$180 \% / 3 \mathrm{sec}$VT $: 120 \% / 60 \mathrm{sec}$,$150 \% / 5 \mathrm{sec}$			
Acceleration/deceleration time		0.01 to 3,600.0 seconds (in linear or curved pattern)																		
Starting torque	SLV	CT : $200 \% / 0.3 \mathrm{~Hz}$VT : $150 \% / 0.5 \mathrm{~Hz}$															CT : $180 \% / 0.3 \mathrm{~Hz}$ VT : $120 \% / 0.5 \mathrm{~Hz}$			
	0Hz-SLV	CT : $150 \% / 0 \mathrm{~Hz}$ range (with motor less one power level than inverter) VT : Disable.															CT : 130% (same as the left) VT : Disable.			

note) There are only 037HFF3, 037HFUF3 and 040HFEF3 as 037/040 model.
note) There are only 1320 HFF 3 , 1320HFEF3 and 1500 HFUF 3 as $1320 / 1500$ model.
(3) Common specifications of 200 V class and 400 V class models (continued)

Model name (type name) SJ700D-****FF3/FEF3/FUF3		004 L	007	015	L/H	037 040 L/H	055	L/H	L/10	150	185	220	3/4	370	L/ 4	550	750 H	900 H	1100 H	1320 1500 H
	Standard operator	Setting with 1 and 78 keys																		
	External signal (Note6)	0 to $+10 \mathrm{VDC},-10$ to +10 VDC (input impedance: $10 \mathrm{k} \Omega$), 4 to 20 mA (input impedance: 100Ω)																		
	External port	Setting via RS485 communication																		
	Standard operator	Start/stop commands (forward/reverse switching by parameter setting)																		
	External signal	$\begin{aligned} & \text { Forward-operation start/stop commands (reverse-operation start/stop possible when relevant commands are assigned to } \\ & \text { intelligent input terminals) } \\ & \text { 3-wire input possible (when relevant commands are assigned to control circuit terminals) } \\ & \hline \end{aligned}$																		
	External port	Setting via RS485 communication																		
(2)	ent input minals	8 terminals, NO/NC switchable, sink logic/source logic switchable [Terminal functions] Select eight of 69 functions. Reverse operation (RV), Multispeed 1 setting (CF1), Multispeed 2 setting (CF2), Multispeed 3 setting (CF3), Multispeed 4 setting (CF4), Jogging (JG), external DC braking (DB), 2nd motor control (SET), 2-stage acceleration/deceleration (2CH), free-run stop (FRS), external trip (EXT), unattended start protection (USP), commercial power supply switching (CS), software lock (SFT), analog input switching (AT), 3rd motor control (SET3), reset (RS), starting by 3-wire input (STA), stopping by 3-wire input (STP), forward/reverse switching by 3-wire input (F/R), PID disable (PID), PID integration reset (PIDC), control gain switching (CAS), acceleration by remote control (UP), deceleration by remote control (DWN), data clearance by remote control (UDC), forcible operation (OPE), multispeed bit 1 (SF1), multispeed bit 2 (SF2), multispeed bit 3 (SF3), multispeed bit 4 (SF4), multispeed bit 5 (SF5), multispeed bit 6 (SF6), multispeed bit 7 (SF7), overload restriction selection (OLR), torque limit selection (enabling/disabling) (TL), torque limit 1 (TRQ1), torque limit 2 (TRQ2), P/PI switching (PPI), LAD cancellation (LAC), trigger for frequency addition (A145) (ADD), forcible-terminal operation (F-TM), cumulative power clearance (KHC), general-purpose input 1 (MI1), general-purpose input 2 (MI2), general-purpose input 3 (MI3), general-purpose input 4 (MI4), general-purpose input 5 (MI5), general-purpose input 6 (MI6), general-purpose input 7 (MI7), general-purpose input 8 (MI8), analog command holding (AHD), emergency stop(EMR)*Note4,no assignment (no)																		
	mistor input terminal	1 terminal (positive temperature coefficient/negative temperature coefficient switchable for resistor)																		
\%	elligent terminals	5 open-collector output terminals, NO/NC switchable, sink logic/source logic switchable 1 relay (1c-contact) output terminal: NO/NC switchable [Terminal functions] Select six of 51 functions. Running (RUN), constant-speed reached (FA1), set frequency overreached (FA2), overload notice advance signal (1) (OL), output deviation for PID control (OD), alarm signal (AL), set frequency reached (FA3), over-torque (OTQ), instantaneous power failure (IP), under voltage (UV), torque limited (TRQ), operation time over (RNT), plug-in time over (ONT), thermal alarm signal (THM), 0 Hz detection signal (ZS), set frequency overreached 2 (FA4), set frequency reached 2 (FA5), overload notice advance signal (2) (OL2), PID feedback comparison (FBV), communication line disconnection (NDc), logical operation result 1 (LOG1), logical operation result 2 (LOG2), logical operation result 3 (LOG3), logical operation result 4 (LOG4), logical operation result 5 (LOG5), logical operation result 6 (LOG6), capacitor life warning (WAC), cooling-fan speed drop (WAF), starting contact signal (FR), heat sink overheat warning (OHF), low-current indication signal (LOC), general-purpose output 1 (M01), general-purpose output 2 (M02), general-purpose output 3 (M03), general-purpose output 4 (M04), general-purpose output 5 (M05), general-purpose output 6 (M06), inverter ready (IRDY), forward rotation (FWR), reverse rotation (RVR), major failure (MJA), alarm code 0 to 3 (AC0 to AC3)																		
	Itelligent itor output erminals	Analog voltage output(Note7), analog current output(Note7), pulse-string output (e.g., A-F, D-F [n-fold, pulse output only], A, T, V, P)																		
Monito	$\begin{aligned} & \text { ring on } \\ & \text { display } \end{aligned}$	Output frequency, output current, output torque, frequency conversion data, trip history, input/output terminal status, electric power, and others																		
DC	braking	Triggered at motor start-up, when the actual motor frequency exceeds the acceleration frequency set by a stop command, when the actual motor frequency exceeds the frequency set by a frequency command, or by an externally input command (braking force, time, and frequency are variable).																		
Other fu	unctions	Free V/f setting (7 breakpoints), frequency upper/lower limit, jump (center) frequency, acceleration/deceleration according to characteristic curve, manual torque boost level/breakpoint, energy-saving operation, analog meter adjustment, start frequency setting, carrier frequency adjustment, electronic thermal function (available also for free setting), external start/end frequency/frequency rate, analog input selection, retry after trip, restart after instantaneous power failure, output of various signals, starting with reduced voltage, overload restriction, initial-value setting, automatic deceleration at power failure, AVR function, fuzzy acceleration/deceleration, online/offline auto-tuning, high-torque multi-motor operation (sensorless vector control of two motors by one inverter)																		
Carrier variatio	frequency	CT $: 0.5$ to 15 kHz CT: 0.5 to 10 kHz VT $: 0.5$ to 12 kHz VT $: 0.5$ to 8 kHz																		
Protecti	ve functions	Overcurrent protection, overvoltage protection, under voltage protection, electronic thermal protection, temperature error protection, instantaneous power failure protection, phase loss input protection, braking-resistor overload protection, ground-fault current detection at power-on, USP error, external trip, emergency stop trip, CT error, communication error, option board error, and others																		

Chapter 6 Specifications

(3) Common specifications of 200 V class and 400 V class models (continued)

Model name (type name) SJ700D-****FF3/FEF3/FUF3		004 L	007 L/H	L/H	L/H	037 040 L/H	L/H	075	L/10	150	185	220	3/4	370	450	550	750 H	900 H	$\begin{gathered} 1100 \\ \mathrm{H} \end{gathered}$	$\begin{gathered} 1320 \\ 1500 \\ \mathrm{H} \end{gathered}$
	Ambient temperature, storage temperature(Note5), humidity	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (ambient), $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ (storage), 20% to $90 \% \mathrm{RH}$ (no condensation allowed)																		
	Vibration tolerance (See Note 1.)	$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10 \sim 55 \mathrm{~Hz}$											$2.94 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10 \sim 55 \mathrm{~Hz}$							
	Installation environment	Environment without corrosive gases and dust, at an altitude of $1,000 \mathrm{~m}$ or less Note9)																		
	Coating color	Grey																		
	Feedback option	Vector control with sensor																		
	Digital input option	4-digit BCD input, 16-bit binary input																		
	DeviceNet option	Option to support the open-network DeviceNet function (Same as SJ700-2) note12)																		
	Profibus-DP option	Option to support the open-network Profibus-DP function (Same as SJ700-2) note12)																		
Other optional components		LCD operator WOP, digital operator with potentiometer, Braking resistor, AC reactor, DC reactor, Noise filter, Operator cables, Harmonic-wave suppressor unit, LCR filter, Analog operation panel, Regenerative braking unit, Regenerative energy-saving unit, Harmonics suppression unit, Controllers for various applications, PC tool ProdriveNext																		

Note 1: The vibration tolerance was tested in compliance with JIS C60068-2-6:2010 (IEC 60068-2-6:2007).
Note 2: The insulation distance complies with the UL and CE standards.
Note 3: The applicable motor refers to Hitachi standard 3-phase motor(4-pole). when using other motors, care must be taken to prevent the rated motor current $(50 / 60 \mathrm{~Hz})$ from exceeding the rated output current of the inverter
Note 4: Function " $64(\mathrm{EMR})$ "cannot be assigned to input terminal 3 by an operation from the operator. The function is automatically assigned to the terminal when slide switch SW1 is set to ON.
Note 5: The storage temperature refers to the short-term temperature during transport.
Note 6: The frequency command will equal the maximum frequency at 9.8 V for input voltage 0 to 10 VDC , or at 19.6 mA for input current 4 to 20 mA .If this characteristic is not satisfactory for your application, contact your Hitachi sales representative.
Note 7: The analog voltage monitor and the analog current monitor are rough output values for analog meter connection. The maximum output value might shift a little by the difference of the analog output circuit than 10 V or 20 mA . Please inquire when there is a possibility that the inconvenience is caused.
Note8: As for the range of the speed change, the variation range is different according to the installation situation and the characteristic and the usage condition of the motor. Please inquire about details.
Note9: The density of air decreases by 1% whenever rising by 100 m when the altitude exceeds 1000 m . Therefore, it is necessary to decrease the calorific value. The calorific value of the main circuit semiconductor such as IGBT is proportional to the current and the voltage.
Therefore, please decrease by 1% and use the current rating every time it rises by 100 m .
Please inquire about use in the high ground of 2500 m or more.
Note10: When Sensor-less vector control is selected (A044=03), you may not obtain an intended starting torque or motor may trip depending on the applied motor.
Note11: The inverter detects IGBT error (E30) as a protection function.
However IGBT error (E30) is not a protection for an output short circuit, therefore there is a possibility that IGBT will get damaged. Moreover overcurrent error (E01 to E04) may be detected instead of IGBT error depending on the operational condition of an inverter.
Note12: The option cannot access new parameters in SJ700D-3.

6.2 External dimensions

(200V class) SJ700D-004 to 037 LFF3/LFEF3/LFUF3
(400V class) SJ700D-007 to 037 HFF3/HFEF3/HFUF3

SJ700D-055 to 110 LFF3/LFEF3/LFUF3/HFF3/HFEF3/HFUF3

SJ700D-150 to 220 LFF3/LFEF3/LFUF3/HFF3/HFEF3/HFUF3

SJ700D-300 LFF3/LFEF3/LFUF3/HFF3/HFEF3/HFUF3

5 Cable Holes (\$25)

SJ700D-370 to 450 LFF3/LFEF3/LFUF3/HFF3/HFEF3/HFUF3 SJ700D-550HFF3/HFEF3/HFUF3

SJ700D-550LFF3/LFEF3/LFUF3

Chapter 6 Specifications

SJ700D-750 to 900 HFF3/HFEF3/HFUF3

SJ700D-1100HFF3/HFEF3/HFUF3, SJ700D-1320HFF3/HFEF3, SJ700D-1500HFUF3

[^0]: DANGER! RISQUE DE BLESSURE OU DE CHOC ELECTRIQUE

 - Lire attentivement le manuel avant l'installation et suivre les instructions
 - Avant d'intervenir dans le variateur, couper le circuit de puissance et attendre 10 minutes avant d'ouvrir le capot

[^1]: - Character " 0 " in the third digit is blinking.

 Since the third digit need not be changed, press the [STR] key to determine the character " 0 ".

[^2]: *1 This setting is valid only when the OPE-SR is connected.

[^3]: (Note) < > indicate the setting range of 75 to 150 kW
 (Note) CT : Constant torque mode, VT : variable torque mode, you can set CT or VT by b049.

